RESUMEN
BACKGROUND: Nutrition has a primary role for optimum expression of genetic potential, and most of the farmers have limited resources of green fodder. Hence, a fat-soluble vitamin, especially vitamin A and E and trace elements remained most critical in the animal's ration and affects their productive and reproductive performance adversely. Animals cannot be able to produce these vitamins in their bodies; hence, an exogenous regular supply is needed to fulfil the physiological needs and to maintain high production performance. This study elucidated effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) administration on gene expression, metabolic, antioxidants and immunological parameters in dromedary camels during transition period. RESULTS: At 0 day, there were no appreciable differences in the expression patterns of the metabolic (IGF-I, ACACA, SCD, FASN, LPL, and BTN1A1) genes between the control and treatment groups, despite lower levels. A substantial variation in the mRNA levels of SOD1, SOD3, PRDX2, PRDX3, PRDX4, PRDX6, and AhpC/TSA was observed between the control and treatment groups, according to the antioxidant markers. In comparison to the control group, the treatment group displayed a significant up-regulation at 0 and 21 days. The treatment and control groups exhibited substantial differences in the mRNA values of IL-1α, IL-1ß, IL-6, and TNFα, as indicated by immunological markers. In comparison to the control group, there was a noticeable down-regulation in the treatment group at 0 and + 21 days. But IL10 produced the opposite pattern. No significant difference was observed in glucose, cholesterol, triglyceride, HDL, total protein, NEFA, BHBA, cortisol and IGF-1 levels between control and treatment group. The activity of serum GPx, SOD and TAC was significantly affected by time and treatment x time in supplemented groups as compared with control group. IL-1, IL-1, IL-6, and TNF were noticeably greater in the control group and lower in the treatment group. Additionally, in all groups, the concentration of all pro-inflammatory cytokines peaked on the day of delivery and its lowest levels showed on day 21 following calving. The IL-10 level was at its peak 21 days prior to calving and was lowest on calving day. CONCLUSION: The results demonstrated a beneficial effect of antioxidant vitamins and trace elements on the metabolic, antioxidant and immunological markers in dromedary camels throughout their transition period.
Asunto(s)
Oligoelementos , Animales , Oligoelementos/farmacología , Antioxidantes/metabolismo , Vitaminas/farmacología , Camelus , Vitamina A/farmacología , Interleucina-6 , Vitamina K , Zinc , ARN Mensajero , Expresión Génica , Interleucina-1RESUMEN
BACKGROUND: Despite the fact that diarrhea is more accurately described as a clinical symptom than a disease. Diarrhea is one of the most important issues in ovine medicine, particularly in lambs, and because of high morbidity and mortality rate, sluggish growth performance, and veterinary costs, it is believed to be a major source of economic loss. Salmonella and enterotoxigenic Escherichia coli are the most common and commercially significant agents responsible for diarrhea. OBJECTIVE: The objective of this study was to monitor the nucleotide sequence variations, gene expression, serum inflammatory and oxidative stress biomarkers in diarrheic lambs. Another aim was to identify different pathotypes and virulence genes of Salmonella and E. coli causing diarrhea. METHODOLOGY: Blood samples were taken from 50 Barki who were diarrheal and 50 who appeared to be healthy, and then divided in 3 portions, with EDTA added to the first part for CBC, DNA and RNA extraction. The second sample received 5000 I.U. of heparin calcium, and a clean plain tube was used for the third component. The second and third sections were centrifuged to extract serum and plasma until the biochemical and immunological analysis was completed. Fecal samples were collected for bacteriological examination, and the bacteria were identified by PCR analysis. PCR-DNA sequencing was conducted for immune (SELL, JAK2, SLC11A1, IL10, FEZF1, NCF4, LITAF, SBD2, NFKB, TNF-α, IL1B, IL6, LGALS, and CATH1), antioxidant (SOD1, CAT, GPX1, GST, Nrf2, Keap1, HMOX1, and NQO1), and GIT health (CALB1, GT, and MUC2) genes in healthy and diarrheic lambs. RESULTS: Virulent genetic markers of pathogenic characteristics of E. coli (astA, Vt2e (Stx2e), CFA/I, groES and luxS) and Salmonella (invA, SopB, bcfC and avrA) were detected in all diarrheic lambs. PCR-DNA sequencing of immune, antioxidant and intestinal health genes found eleven single nucleotide polymorphisms (SNPs) linked to either diarrhea resistance or susceptibility in Barki lambs. Transcript levels of immune, antioxidant, and GIT health (CALB1, GT, and MUC2) genes varied between healthy and diarrheic lambs. Nucleotide sequence variation of the genes under inquiry between reference sequences in GenBank and those of the animals under investigation verified all identified SNPs. Significant (P = 0.001) erythrocytosis, neutrophilic leukocytosis, with lymphocytopenia were observed in diarrheic lambs. Significant (P = 0.001) increases in serum IL-1α, IL-1ß, IL-6, TNF-α (90.5 ± 1.7, 101.8 ± 1.7, 72.3 ± 6.6, 71.26 ± 4.89 Pg/ml, respectively), serum Fb, Cp, Hp, SAA (230.7 ± 12.4 mg/dl, 6.5 ± 0.07 mg/dl, 2.5 ± 0.09 g/dl, 7.4 ± 0.4 mg/L, respectively), free radicals (MDA, NO), cortisol (6.91 ± 0.18 µg/dl) and growth hormone, with significant (P = 0.001) decreases in serum IL-10 (81.71 ± 1.05 Pg/ml), antioxidants (CAT, GPx), insulin, triiodothyronine (T3) and thyroxine (T4) in diarrheic lambs. CONCLUSIONS: The study's findings provided credence to the theory that marker-assisted selection (MAS) could be used to predict and prevent diarrhea in Barki sheep by selecting lambs based on SNPs in genes linked to inflammation, antioxidants, and intestinal health. In order to establish an efficient management protocol and determine the most susceptible risk period for disease occurrence, gene expression profiles of the genes under investigation, pro-inflammatory cytokines and acute phase proteins may also be utilized as proxy biomarkers for lamb enteritis.
Asunto(s)
Diarrea , Enfermedades de las Ovejas , Animales , Diarrea/veterinaria , Diarrea/microbiología , Diarrea/sangre , Enfermedades de las Ovejas/microbiología , Enfermedades de las Ovejas/sangre , Ovinos , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/sangre , Biomarcadores/sangre , Antioxidantes/metabolismo , Salmonelosis Animal/microbiología , Salmonelosis Animal/sangre , Salmonella/genética , Salmonella/clasificación , Escherichia coli Enterotoxigénica/genética , Variación GenéticaRESUMEN
Genetic improvement of local rabbit breeds using modern approaches such as marker-assisted selection requires accurate and precise information about markerâtrait associations in animals with different genetic backgrounds. Therefore, this study was designed to estimate the association between two mutations located in the Neuropeptide Y (NPY, g.1778G > C) and Phosphoglycerate Mutase 2 (PGAM2, c.195 C > T) genes in New Zealand White (NZW), Baladi (BR), and V-line rabbits. The first mutation was genotyped using high-resolution melting, and the second mutation was genotyped using the PCR-RFLP method. The results revealed significant associations between the NPY mutation and body weight at 10 (V-line) and 12 weeks of age (NZW, BR, and V-line), body weight gain (BWG) from 10 to 12 weeks of age (BR), BWG from 6 to 12 weeks of age (NZW, BR, and V-line), average daily gain (NZW, BR, and V-line, and BR), growth rate (GR) from 8 to10 weeks (V-line), 10 to 12 weeks (BR), and GR from 6 to 12 weeks of age (BR, and V-line). The PGAM2 mutation was associated with body weight at 10 (V-line) and 12 (NZW, and V-line) weeks of age, with significant positive additive effects at 12 weeks of age in all breeds, and was associated with BWG from 8 to 10 and 10 to 12 in BR, and BWG from 6 to 12 weeks of age (NZW, and BR), and average daily gain (NZW, and BR), and was associated with GR form 8 to 10 weeks (BR), from10 to 12 weeks (BR, and V-line) and from 6 to 12 weeks (BR). The results highlighted the importance of the two mutations in growth development, and the possibility of considering them as candidate genes for late growth in rabbits.
Asunto(s)
Neuropéptido Y , Fosfoglicerato Mutasa , Polimorfismo de Nucleótido Simple , Animales , Conejos/crecimiento & desarrollo , Conejos/genética , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Masculino , Femenino , Genotipo , Peso Corporal/genética , Polimorfismo de Longitud del Fragmento de Restricción , Aumento de Peso/genéticaRESUMEN
The objective of this study was to explore single nucleotide polymorphisms (SNPs) and gene expression of immune and antioxidant markers associated with reproductive disorders in Baladi goats. A total of one hundred adults Baladi does were allocated into two equal-sized groups: normal reproductive performance and does have a history of reproductive disorders. DNA sequencing of PRLR (304-bp), LTF (904-bp), TLR2 (420-bp), TLR4 (335-bp), CLA-DRB3.2 (285-bp), SOD3 (735-bp), CAT (1526-bp), GPX4 (782-bp), and GST (690-bp) revealed SNPs associated with reproductive disorders tolerance/susceptibility in investigated does. Nonetheless, DNA sequencing of beta defensin (483-bp), CCL5 (840-bp), and ATOX1 (374-bp) genes elicited a monomorphic pattern. Levels of PRLR, LTF, TLR2, TLR4, CLA-DRB3.2, beta defensin, and CCL5 genes were significantly up-regulated in does affect with reproductive disorders than tolerant ones; while SOD3, CAT, GPX4, GST and ATOX1 genes pattern elicited an opposite trend. The results herein confirmed the potential significance of SNPs in immune and antioxidant genes as genetic markers for reproductive disorders tolerance/susceptibility in Baladi does. The Gene expression profile of investigated genes could be also used as proxy biomarkers for the prediction of the most susceptible risk time for disease occurrence and for building up an effective management protocol.
Asunto(s)
Antioxidantes , beta-Defensinas , Animales , Receptor Toll-Like 4/genética , Receptor Toll-Like 2/genética , Cabras/genética , beta-Defensinas/genética , Polimorfismo de Nucleótido Simple/genética , ADN , Marcadores Genéticos/genéticaRESUMEN
The objective of this study was to explore the immunological and antioxidant alterations associated with ovine postpartum disorders. Blood samples were collected from 90 adult Barki ewes and allocated into three equal-sized groups (30 ewes each): control group (CG), inflammatory postpartum disorders group (IPG) and non-inflammatory postpartum disorders group (NIPG). PCR-DNA sequencing approach was carried out for TLR4 (256-bp) and SOD (456-bp) genes, and nucleotide sequence variations were noticed to be associated with postpartum disorders resistance/susceptibility. Gene expression profile was also evaluated and levels of IL5, IL6, IL1-ß, TNF alpha, TLR4 and Tollip were significantly up-regulated in ewes affected with postpartum disorders than resistant ones, while SOD and CAT genes pattern elicited an opposite trend. Exploring serum profile also showed a significant increase of IL-1α, IL-1ß, IL-6, TNF-α, MDA and NO in IPG compared to their correspond values in NIPG and CG. However, serum levels of IL-10, CAT, GSH and GPx were significantly decreased. This study highlights that SNPs in TLR4 and SOD genes could be genetic markers for postpartum disorders resistance/susceptibility in Barki ewes. Gene expression alongside serum profiles of antioxidant markers could also be used to follow-up the immune status of ewes to build up an effective management protocol.
Asunto(s)
Antioxidantes , Polimorfismo de Nucleótido Simple , Animales , Ovinos , Femenino , Antioxidantes/metabolismo , Receptor Toll-Like 4 , Periodo Posparto , Factor de Necrosis Tumoral alfa , Superóxido Dismutasa , Expresión GénicaRESUMEN
Forebrain ischemia-reperfusion (IR) injury causes neurological impairments due to decreased cerebral autoregulation, hypoperfusion, and edema in the hours to days following the restoration of spontaneous circulation. This study aimed to examine the protective and/or therapeutic effects of cerebrolysin (CBL) in managing forebrain IR injury and any probable underlying mechanisms. To study the contribution of reperfusion to forebrain injury, we developed a transient dual carotid artery ligation (tDCAL/IR) mouse model. Five equal groups of six BLC57 mice were created: Group 1: control group (no surgery was performed); Group 2: sham surgery (surgery was performed without IR); Group 3: tDCAL/IR (surgery with IR via permanently ligating the left CA and temporarily closing the right CA for 30 min, followed by reperfusion for 72 h); Group 4: CBL + tDCAL/IR (CBL was given intravenously at a 60 mg/kg BW dose 30 min before IR); and Group 5: tDCAL/IR + CBL (CBL was administered i.v. at 60 mg/kg BW three hours after IR). At 72 h following IR, the mice were euthanized. CBL administration 3 h after IR improved neurological functional recovery, enhanced anti-inflammatory and antioxidant activities, alleviated apoptotic neuronal death, and inhibited reactive microglial and astrocyte activation, resulting in neuroprotection after IR injury in the tDCAL/IR + CBL mice group as compared to the other groups. Furthermore, CBL reduced the TLRs/NF-kB/cytokines while activating the Keap1/Nrf2/antioxidant signaling pathway. These results indicate that CBL may improve neurologic function in mice following IR.
Asunto(s)
Antioxidantes , Daño por Reperfusión , Ratones , Animales , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Modelos Animales de Enfermedad , Prosencéfalo/metabolismo , Estrés OxidativoRESUMEN
Thiamethoxam (TMX) belongs to the neonicotinoid insecticide family and may evoke marked endocrine disruption. In this study, the reproductive toxicity of TMX on male rats was assessed along with the ability of Saussurea lappa (costus roots) and/or Silybum marianum extract (SM) to alleviate TMX toxicity. Male rats were allocated to seven groups and orally treated daily for 4 weeks: Control (saline), Costus (200 mg/kg), SM (150 mg/kg), TMX (78.15 mg/kg), TMX-costus, TMX-SM, and TMX-costus-SM (at the aforementioned doses). Compared with control group, TMX administration induced reductions in testicular levels of glutathione and antioxidant activities of SOD and CAT. In addition, TMX-exposed rats showed lower serum testosterone hormonal levels as well as higher malondialdehyde and nitric acid levels were detected in TMX-administered rats. On a molecular basis, mRNA expressions of StAR, CYP17a, 3ß-HSD, SR-B1, and P450scc genes were significantly down-regulated in TMX group, whereas the expression of LHR and aromatase genes was up-regulated. Moreover, TMX-induced testicular damage was confirmed by histopathological screening. Importantly, however, the administration of either costus roots or SM significantly alleviated all aforementioned TMX-induced changes, indicating the effective antioxidant activities of these plant products. Interestingly, simultaneous treatment with costus root and SM provided better protection against TMX reproduction toxicity than treatment with either agent alone.
Asunto(s)
Saussurea , Animales , Antioxidantes , Peroxidación de Lípido , Silybum marianum , Estrés Oxidativo , Ratas , TiametoxamRESUMEN
The aim of this study was to explore the genetic polymorphisms in LTF/EcoRI and TLR4/AluI loci and their association with milk and reproductive performance in Holstein cattle. A randomly selected 800 Holstein dairy cows from two dairy farms (400 animals each) in Egypt were used. Based on the two farm records, association between LTF/EcoRI genotypes and milk performance traits (order of lactation, daily milk yield, days in milk, corrected milk at 305 day and dry period) was carried out. Meanwhile, exploring of TLR4/AluI genotypes effect was done on data for reproductive performance (age at first freshening, calving interval, number of services per conception, ovarian rebound and days open). DNA was extracted from blood samples collected from Holstein dairy cows of the both farms and restriction analysis of 301-bp PCR products of LTF gene revealed two genotypes: AA genotype (301 bp) and AB genotype (301, 201 and 100 bp). Meanwhile, restriction analysis of 382-bp PCR products of TLR4 gene digested with AluI yielded two alleles (A and B) and three genotypes (AA, AB and BB). The A allele was indicated by two bands at 300 and 82 bp, and the B allele resulted in three fragments of 160, 140 and 82 bp. There was a significant association (p ≤ 0.05) between LTF genotypes and milk performance traits except for days in milk. The TLR4 genotypes had significant effects (p ≤ 0.05) on age at first freshening, calving interval, number of services per conception, ovarian rebound and days open. Ordinal logistic regression statistical model also revealed that it is possible to calculate high reproductive performance traits and to predict favourable dairy cows based on LTF and TLR4 genotypes. This research reveals the effectiveness of LTF/EcoRI and TLR4/AluI loci as candidates for reproductive performance assessment in Holstein cattle.
Asunto(s)
Bovinos/genética , Genotipo , Lactancia/genética , Lactoferrina/genética , Polimorfismo Genético , Reproducción/genética , Receptor Toll-Like 4/genética , Animales , Bovinos/fisiología , Femenino , Lactoferrina/fisiología , Receptor Toll-Like 4/fisiologíaRESUMEN
Relatedness between single nucleotide polymorphisms in IL8 and TLR4 genes and digital dermatitis resistance/susceptibility was investigated in seventy Holstein dairy cows. Animals were assigned into two groups, affected group (n = 35) and resistant group (n = 35) based on clinical signs and previous history of farm clinical records. Blood samples were collected for DNA extraction to ampliy fragments of 267-bp and 382-bp for IL8 and TLR4 genes, respectively. PCR-DNA sequencing revealed three SNPs in each of IL8 and TLR4 genes. The identified SNPs associated with digital dermatitis resistance were C94T, A220G, and T262A for IL8 and C118T for TLR4. However, the G349C and C355A SNPs in TLR4 gene were associated with digital dermatitis susceptibility. Chi-square analysis for comparison the distribution of all identified SNPs in both IL8 and TLR4 genes between resistant and affected animals showed no significant variation among the identified SNPs in IL8 gene. Meanwhile, there was a significant variation in case of TLR4 gene. As a pilot study, the present results revealed that identified SNPs in IL8 and TLR4 genes can be used as a genetic marker and predisposing factor for resistance/susceptibility to digital dermatitis in dairy cows. However, TLR4 gene may be a potential candidate for such disease.
Asunto(s)
Enfermedades de los Bovinos/genética , Bovinos/genética , Dermatitis Digital/genética , Predisposición Genética a la Enfermedad/genética , Interleucina-8/genética , Polimorfismo de Nucleótido Simple/genética , Receptor Toll-Like 4/genética , Animales , Femenino , Estudios de Asociación GenéticaRESUMEN
Nannochloropsis species should be given priority when it comes to microalgae that should be added to feed since they are suitable for intense culture and have a high concentration of PUFAs (especially EPA), antioxidants, and certain vitamins. This study investigated the possible immune and antioxidant impacts of Nannochloropsis supplementation on Barki ewes during transition period and their newly born lambs. Three weeks prior to the expected time of lambing, the researched ewes were divided into two equal groups of thirty ewes each. The second group, on the other hand, was fed the same base diet as the first group plus 10 g of commercially available Nannochloropsis powder per kg of concentrate, given daily to each ewe's concentrate. Findings revealed that supplementation of ewes with Nannochloropsis significantly up-regulated the expression pattern of immune (NFKB, RANTES, HMGB1, TNF-α, IRF4, TLR7, CLA-DRB3.2, IL1B, IL6, CXCL8, S-LZ, and Cathelicidin), and antioxidant (SOD1, CAT, GPX1, GST, ATOX1, Nrf2 and AhpC/TSA) markers in ewes post-lambing and their newly born lambs. Additionally, mRNA levels of lipogenic (ACACA, FASN SCD, LPL, and BTN1A) markers were significantly up-regulated in lambs from supplemented ewes than control ones. There was a significant increase in the WBCs, Hb, RBc count, serum level of glucose, total protein, triacylglycerol and total cholesterol, GPx, catalase, IL1α and IL6 with significantly decreased serum level of TNF-α and MDA in supplemented ewes after lambing as compared with control ones. There was also a significant increase in WBCs, Hb, RBc count, birth weight and body temperature with significantly decreased in the serum levels of TNF-α and stillbirth of newly born lambs from supplemented ewes as compared to other lambs from control ones.
Asunto(s)
Alimentación Animal , Antioxidantes , Dieta , Suplementos Dietéticos , Animales , Femenino , Antioxidantes/metabolismo , Ovinos , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Dieta/veterinaria , Expresión Génica/efectos de los fármacos , Oveja Doméstica/fisiología , Biomarcadores/sangreRESUMEN
The objective of this study was to elaborate Doppler ultrasonographic scan, genetic resistance and serum profile of markers associated with endometritis susceptibility in Egyptian buffalo-cows. The enrolled animals were designed as; twenty five apparently healthy buffalo-cows considered as a control group and twenty five infected buffalo with endometritis. There were significant (p < 0.05) increased of cervical diameter, endometrium thickness, uterine horn diameter, TAMEAN, TAMAX and blood flow through middle uterine artery with significant decrease of PI and RI values in endometritis buffalo-cows. Gene expression levels were considerably higher in endometritis-affected buffaloes than in resistant ones for the genes A2M, ADAMTS20, KCNT2, MAP3K4, MAPK14, FKBP5, FCAMR, TLR2, IRAK3, CCl2, EPHA4, and iNOS. The RXFP1, NDUFS5, TGF-ß, SOD3, CAT, and GPX genes were expressed at substantially lower levels in endometritis-affected buffaloes. The PCR-DNA sequence verdicts of healthy and affected buffaloes revealed differences in the SNPs in the amplified DNA bases related to endometritis for the investigated genes. However, MAP3K4 elicited a monomorphic pattern. There was a significant decrease of red blood cells (RBCs) count, Hb and packed cell volume (PCV) with neutrophilia, lymphocytosis and monocytosis in endometritis group compared with healthy ones. The serum levels of Hp, SAA, Cp, IL-6, IL-10, TNF-α, NO and MDA were significantly (PË0.05) increased, along with reduction of CAT, GPx, SOD and TAC in buffalo-cows with endometritis compared to healthy ones. The variability of Doppler ultrasonographic scan and studied genes alongside alterations in the serum profile of investigated markers could be a reference guide for limiting buffalo endometritis through selective breeding of natural resistant animals.
Asunto(s)
Bison , Enfermedades de los Bovinos , Endometritis , Animales , Femenino , Humanos , Bovinos , Endometritis/diagnóstico por imagen , Endometritis/genética , Endometritis/veterinaria , Búfalos/genética , Antioxidantes , Egipto , Expresión Génica , Canales de potasio activados por SodioRESUMEN
Superovulation is a crucial step in assisted reproductive technology that involves the administration of gonadotrophins. Repeated superovulations result in severe ovarian damage. The present study investigated the effect of in vivo administration of lycopene on ovarian damage induced by four successive cycles of superovulation. Superovulated mice were simultaneously administered intraperitoneally with saline (R4) or 5 mg/kg lycopene (R4-Lyc). The evaluated parameters were the count of different types of follicles, expression of ovarian antioxidant- and apoptosis-related genes, and serum concentrations of estradiol, progesterone, and inhibin-B. Increased numbers of healthy follicles and a decreased count of atretic follicles were observed in mice of the R4-Lyc group compared to those of the R4 group. Moreover, significantly higher mRNA levels of Sod3, Cat, and Nrf2 and lower mRNA levels of Keap1, Tnf, Nfkb, and Casp3, together with decreased H2O2 concentrations and increased total antioxidant capacity, were detected in the ovaries of lycopene-treated mice. Regarding serum reproductive hormones, elevated concentrations of estradiol, progesterone, and inhibin-B were evident in lycopene-administered mice. The present study reports a significant role of lycopene in alleviating the ovarian damage induced by multiple hormonal superstimulations, which could help to improve the outcomes of in vitro embryo production.
RESUMEN
Background: Mastitis in goats is unquestionably a grave concern, with far-reaching implications for both animal well-being and productivity, while also presenting a potential threat to public health. Aim: The study aimed to compare culture methods and multiplex PCR (m-PCR) in the detection of the most three common mastitis-causing pathogens (Staphylococcus aureus, Escherichia coli, and Streptococcus spp.) and investigate the gene expression, single nucleotide polymorphisms (SNPs), serum concentrations of immunological and antioxidant indicators linked to mastitis in Shami goats. Methods: One hundred Shami do (50 Shami goats with clinical mastitis and 50 normal goats taken as control group). The culture methods and m-PCR analysis were used to find the bacteria in the milk samples. Blood samples were obtained to assess some hemato-biochemical parameters, detect SNPs, and determine the expression of certain immunological and antioxidant indicators in the genes. Results: The culture method detected the pathogens causing mastitis in 90% of the milk samples, but m-PCR detected them in 100% of the milk samples. SNPs linked to mastitis resistance/susceptibility in examined does were detected through DNA sequencing of immunological and antioxidant indicators. The magnitude of gene expression varied significantly between the resistant and mastitis-affected groups. Significant (P Ë 0.05) elevations were noticed in WBCs count, mainly neutsrophils count, serum levels of BHB, NEFA, triglycerides, LDL-C, AST, ALT, ALP, creatinine, total protein, globulin, Ca, K, GPx, MDA, acute phase proteins, and cytokines in mastitis affected does as compared to control. While RBCs count, PCV%, lymphocytes count, serum concentration of glucose, cholesterol, HDL-C, albumin, Na, Cl, P, GSH, SOD, and catalase significantly (P Ë 0.05) diminished in mastitis affected does compared to healthy ones. APPs and pro-inflammatory cytokines scored high sensitivities and NPVs but TNF-α and serum amyloid A (SAA) had the highest percentages of increase. Conclusion: The study confirmed that m-PCR is the most sensitive method for bacteria identification (S. aureus, E. coli, and Strept. spp.) while SNPs in antioxidant and immunological genes may be important genetic indicators for mastitis risk or resistance in Shami does. To establish an effective management plan and forecast the most sensitive risk time for illness onset, gene expression profiles of the tested genes may also be employed as proxy biomarkers. TNF-α and SAA may be precious indicators for the detection of caprine mastitis.
Asunto(s)
Enfermedades de las Cabras , Mastitis , Femenino , Animales , Antioxidantes , Cabras , Staphylococcus aureus , Factor de Necrosis Tumoral alfa , Egipto , Escherichia coli , Bacterias , Mastitis/microbiología , Mastitis/veterinaria , Genómica , Enfermedades de las Cabras/microbiologíaRESUMEN
Gentamicin (GEN) is an aminoglycoside antibiotic used to treat gram-negative bacterial infections. Our study aimed to explore curcumin's (CMN) protective role against GEN-induced renal and cardiac toxicity. Rats were randomly classified into 4 equal groups; Control (cont), GEN (100 mg/kg b.wt, i.p.) for seven days, CMN (200 mg/kg b.wt, orally) for 21 days, and CMN + GEN groups. GEN caused renal and cardiac dysfunctions; increased urea, creatinine, uric acid, cystatin C, CK-MB, LDH, and troponin I serum levels. MDA level was elevated significantly while activities of SOD, CAT, and GSH level were reduced significantly in renal and cardiac tissues. GEN-intoxicated rats showed up-regulation of NF-κB, IL-1ß, Keap1, HMOX1, and BAX with down-regulation of Nrf2, and Bcl-2 mRNA expression in renal and cardiac tissues. Also, GEN-induced up-regulation of renal mRNA expression of KIM-1, NGAL, and intermediate filament proteins [desmin, nestin, and vimentin] as well cardiac gene expression of cMyBP-C and H-FABP. GEN-induced toxicity was significantly attenuated by CMN co-treatment as CMN improved renal and cardiac biomarkers, reduced oxidative stress and inflammatory response, and reversed alterations in mRNA expression of all tested renal and cardiac genes. These outcomes indicated that CMN could protect renal and cardiac tissues against GEN-induced oxidative stress, inflammation, and apoptosis.
Asunto(s)
Curcumina , Gentamicinas , Ratas , Animales , Gentamicinas/toxicidad , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Curcumina/farmacología , Curcumina/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Cardiotoxicidad/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Estrés Oxidativo , ARN Mensajero/metabolismo , Apoptosis , Antioxidantes/farmacología , Antioxidantes/metabolismoRESUMEN
Nano-minerals are employed to enhance mineral bioavailability thus promoting the growth and well-being of animals. In recent times, nano-selenium (nano-Se) has garnered significant attention within the scientific community owing to its potential advantages in the context of poultry. This study was conducted to explore the impact of using variable levels of nano-Se on the growth performance, carcass characteristics, serum constituents, and gene expression in growing Japanese quails under both thermoneutral and heat stress conditions. A randomized experimental design was used in a 2 × 3 factorial, with 2 environmental conditions (thermoneutral and heat stress) and 3 nano-Se levels (0, 0.2, and 0.5 mg/kg of diet. The findings revealed that heat stress negatively affected the growth and feed utilization of quails; indicated by the poor BWG and FCR. Additionally, oxidative stress was aggravated under heat stress condition; indicated by increased lipids peroxidation and decreased antioxidant enzymes activities. The addition of nano-Se, especially at the level of 0.2 mg/kg of diet, significantly improved the performance of heat stressed quails and restored blood oxidative status. The expression profile of inflammatory and antioxidant markers was modulated by heat stress and/or 0.2 and 0.5 nano-Se in conjunction with environmental temperature in quail groups. In comparison to the control group, the heat stress-exposed quails' expression profiles of IL-2, IL-4, IL-6, and IL-8 showed a notable up-regulation. Significantly lower levels of the genes for IL-2, IL-4, IL-6, and IL-8 and higher levels of the genes for SOD and GPX as compared to the heat stress group demonstrated the ameliorative impact of 0.2 nano-Se. The expression profiles of IL-2, IL-4, IL-6, and IL-8 are dramatically elevated in quails exposed to 0.5 nano-Se when compared to the control group. SOD and GPX markers, on the other hand, were markedly down-regulated. It was concluded that nano-Se by low level in heat stressed growing quails provides the greatest performance and its supplementation can be considered as a protective management practice in Japanese quail diets to reduce the negative impact of heat stress.
RESUMEN
Algae, as a biological component of the environment, holds promise for the development of novel cuisines. This study aimed to appreciate the dietary Spirulina platensis (SP) impact on growth patterns and as an immune stimulant in broilers. SP-fed chicks at 0.5, 1, and 2 g/kg doses significantly improved hematological indices. Also, gas chromatography of fatty acid profile in broiler breast muscles exhibited greater elevation. Serum total proteins, albumin, and globulin levels significantly increased. ElISA (enzyme-linked immunosorbent assay) revealed elevated immunoglobin M, G, and leptin levels as mirrors for immunological response coordination. Reverse transcription polymerase chain reaction (RT-PCR) exhibited depressed tumour necrosis factor-alpha gene expression (TNF-α) in ilial tissue. Gut's histopathology showed well-developed villi. In conclusion, Spirulina platensis in doses up to 2 g/kg enhances immunity, fatty acid profile, liver function, anti-inflammatory properties, and intestinal absorption of broilers, while doses up to 4 g/kg cause the opposite effect on previous parameters.
RESUMEN
Trypanosomiasis is associated with tissue damage and may trigger an immunological response. These tissue lesions are linked to metabolic issues and oxidative stress. The current study aimed to investigate the immunological, antioxidant, and metabolic changes that may be connected to camel trypanosomiasis. Blood samples were collected from 54 camels and allocated into two groups: The control group (35 camels) and the infected group (19 camels). The genes TLR2, TLR5, IL-17, MARCHF3, RASGRP1, EPS15L1, PPIE, ASB16, CMPK2, LPCAT1, FPGT, GPHN, TNNI3K, DIO3, keap1, and OXSR1 were significantly up-regulated in trypanosomiasis camels. However, down-regulation was observed for the genes Nrf2, PRDX6, and NDUFS5. PCR-DNA sequencing was used to identify nucleotide sequence polymorphisms in the immune (TLR2, TLR5, IL-17, MARCHF3, RASGRP1, and EPS15L1), metabolic (PPIE, ASB16, CMPK2, LPCAT1, FPGT, GPHN, TNNI3K, and DIO3), and antioxidant (Nrf2, Keap1, PRDX6, NDUFS5, and OXSR1) genes between healthy and trypanosomiasis-affected camels. Exploring the serum profile also showed a significant (P Ë 0.05) increase in Hp, SAA, Cp, IL-1ß, IL-6, IL 10, TNF-α, and MDA, with significant (P Ë 0.05) reduction in the serum levels of CAT, SOD, GSH, T3, and T4 in diseased camels compared with healthy ones. Our findings confirm the significance of nucleotide variations, gene expression patterns, and the biochemical profile of the investigated markers as indicators for the susceptibility of trypanosomiasis in dromedary camels and may be utilized to create management strategies.
Asunto(s)
Antioxidantes , Camelus , Tripanosomiasis , Animales , Antioxidantes/metabolismo , Tripanosomiasis/veterinaria , Tripanosomiasis/parasitología , Tripanosomiasis/genética , Tripanosomiasis/inmunología , Predisposición Genética a la Enfermedad , Masculino , Regulación de la Expresión GénicaRESUMEN
This study investigates the role of dietary Bacillus subtilis and oregano essential oil in mitigating the effects of high stocking density on growth performance, carcass traits, physiological stress indicators, gene expression, and intestinal integrity in broiler chickens. A total of, 1250 one-day-old Ross 308 male broiler chicks were randomly allocated to five experimental groups, where each group had five replicates of 50 chicks. Group 1 (control, LSD): 15 chicks/m2 fed a basal diet without feed additive, group 2 (HSD): 20 chicks/m2 fed a basal diet without feed additive, group 3 (BHSD): 20 chicks/m2 fed a basal diet supplemented with B. subtilis (500 mg/kg diet), group 4 (OHSD): 20 chicks/m2 fed a basal diet supplemented with oregano essential oil (300 mg/kg diet), group 5 (CHSD): 20 chicks/m2 fed a basal diet supplemented with oregano essential oil and B. subtilis. At 35 days of age, there was a noticeable improvement in the growth performance of broilers fed CHSD under high stocking density through the increase in body weight gain, dressing percentage, and crude protein digestibility with a decrease in feed conversion rate compared to other groups. Adding CHSD enhanced the state of oxidation and immunity through increasing superoxide dismutase, glutathione peroxidase, and the relative weight of bursa of Fabricius, while decreasing malondialdehyde, in addition to increasing plasma triiodothyronine levels. The microbial structure and morphometric parameters improved in the group that received the CHSD compared to the other groups, where villus height and Lactobacillus population increased, whereas Escherichia coli and Clostridium perfringens population decreased. Glucose transporter 2 (GLUT2), fatty acid transporter 1 (FABP1), and amino acid transferase 1 (CAT1) gene expression levels significantly increased when feeding on oregano essential oil with B. subtilis. In conclusion, combining oregano essential oil and B. subtilis supplements mitigated the effects of high stocking density by enhancing growth performance, antioxidative status, and intestinal integrity, in addition to modifying the genetic expression of genes related to nutrient absorption.
Asunto(s)
Alimentación Animal , Bacillus subtilis , Pollos , Intestinos , Aceites Volátiles , Origanum , Animales , Pollos/crecimiento & desarrollo , Pollos/microbiología , Aceites Volátiles/farmacología , Alimentación Animal/análisis , Origanum/química , Intestinos/efectos de los fármacos , Intestinos/microbiología , Masculino , Suplementos Dietéticos , Estrés Fisiológico/efectos de los fármacosRESUMEN
Determining the gene expression and serum profile of the indicators linked to clinical endometritis susceptibility in Egyptian buffalo cows was the aim of this investigation. The buffalo cows that were enrolled were divided into two groups: forty infected buffalo cows with clinical endometritis and forty seemingly healthy buffalo cows that served as the control group. For the purposes of gene expression and biochemical analysis, ten milliliters of blood was obtained via jugular venipuncture from each buffalo cow. TLR4, IL-8, IL-17, NFKB, SLCA11A1, NCF4, Keap1, HMOX1, OXSR1, ST1P1, and SERP1 were manifestly expressed at much higher levels in the buffaloes with endometritis. On the other hand, the genes that encode SOD, CAT, NDUFS6, Nrf2, and PRDX2 were down-regulated. There was a significant (p < 0.05) elevation of the serum levels of non-esterified fatty acids (NEFAs), beta hydroxy butyric acid (BHBA), triglycerides (TGs), globulin, creatinine, and cortisol, along with a reduction in the serum levels of glucose, cholesterol, total protein albumin, urea, estrogen (E2), progesterone (P4), follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroxine (T4), prostaglandin F2 α (PGF2α), calcium, iron, and selenium, in the endometritis group in comparison with the control. However, no significant change was observed in the values of phosphorus, magnesium, copper, or zinc in either group. Within the selective breeding of naturally resistant animals, the variation in the genes under study and the changes in the serum profiles of the indicators under investigation may serve as a reference guide for reducing endometritis in Egyptian buffalo cows.
RESUMEN
The current study aimed to explore the possible prophylactic and therapeutic effect of Nigella sativa L. oil (NSO) against disruption of endocrine signals and injuries in the thyroid gland, ovary, and uterine tissues induced by sodium fluoride (NaF). Twenty-eight mature female Wistar rats were randomly allocated into four experimental groups (n = 7/group) as follows: control group; NaF group, orally received NaF (20 mg/kg b.wt.) daily; NSO/NaF, orally received NSO (300 mg/kg b.wt.) two weeks before being given NaF and continued throughout the experiment; and NSO+NaF group orally received NSO concurrently with NaF. Our results indicated that NSO restored hormonal balance and suppressed oxidative damage and inflammation. Moreover, the levels of triiodothyronine, thyroxine, thyroid peroxidase, estrogen (E2), progesterone, follicle-stimulating hormone, and luteinizing hormone were elevated, while prostaglandins F2-α and cortisol levels were decreased in NSO treated groups compared to NaF-intoxicated rats. As well, NSO significantly boosted levels of antioxidant molecules, and lowered lipid peroxidation of examined tissues, unlike NaF-treated group. NSO also up-regulated antioxidant enzymes, anti-apoptotic protein, zona pellucida sperm-binding protein, bone morphogenetic protein, and thyroid stimulating hormone, conversely down-regulated inflammatory cytokines, apoptotic proteins, estrogen receptor-α, estrogen receptor-ß, and thyroid stimulating hormone receptors compared to NaF-intoxicated group. Additionally, NSO ameliorated tissue damage of the thyroid gland, ovary, and uterus induced by NaF. -Overall, the prophylactic group (NSO/NaF) performed better antioxidant and anti-inflammatory activities than the treated group almost in all examined tissues, which is reflected by the improvement in the structure of the thyroid, ovarian, and uterine tissues.