Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35032657

RESUMEN

Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.


Asunto(s)
Caenorhabditis elegans , Salud Reproductiva , Animales , Caenorhabditis elegans/genética , Femenino , Reproducción
2.
Biosci Rep ; 44(1)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38131197

RESUMEN

The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.


Asunto(s)
Síndrome del Ovario Poliquístico , Salud Reproductiva , Animales , Femenino , Humanos , Reproducción/fisiología , Salud de la Mujer
3.
Aging Cell ; 20(3): e13324, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33609424

RESUMEN

In aging Caenorhabditis elegans, as in higher organisms, there is more than one cause of death. C. elegans exhibit early death with a swollen, infected pharynx (P death), and later death with pharyngeal atrophy (p death). Interventions that alter lifespan can differentially affect frequency and timing of each type of death, generating complex survival curve shapes. Here, we use mortality deconvolution analysis to investigate how reduction of insulin/IGF-1 signaling (IIS), which increases lifespan (the Age phenotype), affects different forms of death. All daf-2 insulin/IGF-1 receptor mutants exhibit increased lifespan in the p subpopulation (p Age), while pleiotropic class 2 daf-2 mutants show an additional marked reduction in P death frequency. The latter is promoted by pharyngeal expression of the IIS-regulated DAF-16 FOXO transcription factor, and at higher temperature by reduced pharyngeal pumping rate. Pharyngeal DAF-16 also promotes p Age in class 2 daf-2 mutants, revealing a previously unknown role for the pharynx in the regulation of aging. Necropsy analysis of daf-2 interactions with the daf-12 steroid receptor implies that previously described opposing effects of daf-12 on daf-2 longevity are attributable to internal hatching of larvae, rather than complex interactions between insulin/IGF-1 and steroid signaling. These findings support the view that wild-type IIS acts through multiple distinct mechanisms which promote different life-limiting pathologies, each of which contribute to late-life mortality. This study further demonstrates the utility of mortality deconvolution analysis to better understand the genetics of lifespan.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Longevidad/genética , Mutación/genética , Especificidad de Órganos/genética , Receptor de Insulina/genética , Alelos , Animales , Caenorhabditis elegans/microbiología , Conducta Alimentaria , Mutación con Ganancia de Función , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Faringe/patología , Transducción de Señal , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA