Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(13): 5995-6000, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850525

RESUMEN

Clustering is concerned with coherently grouping observations without any explicit concept of true groupings. Spectral graph clustering-clustering the vertices of a graph based on their spectral embedding-is commonly approached via K-means (or, more generally, Gaussian mixture model) clustering composed with either Laplacian spectral embedding (LSE) or adjacency spectral embedding (ASE). Recent theoretical results provide deeper understanding of the problem and solutions and lead us to a "two-truths" LSE vs. ASE spectral graph clustering phenomenon convincingly illustrated here via a diffusion MRI connectome dataset: The different embedding methods yield different clustering results, with LSE capturing left hemisphere/right hemisphere affinity structure and ASE capturing gray matter/white matter core-periphery structure.

2.
J Theor Biol ; 305: 54-69, 2012 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-22575549

RESUMEN

We describe a system of stochastic differential equations (SDEs) which model the interaction between processive molecular motors, such as kinesin and dynein, and the biomolecular cargo they tow as part of microtubule-based intracellular transport. We show that the classical experimental environment fits within a parameter regime which is qualitatively distinct from conditions one expects to find in living cells. Through an asymptotic analysis of our system of SDEs, we develop a means for applying in vitro observations of the nonlinear response by motors to forces induced on the attached cargo to make analytical predictions for two parameter regimes that have thus far eluded direct experimental observation: (1) highly viscous in vivo transport and (2) dynamics when multiple identical motors are attached to the cargo and microtubule.


Asunto(s)
Microtúbulos/fisiología , Modelos Biológicos , Proteínas Motoras Moleculares/fisiología , Animales , Transporte Biológico/fisiología , Procesos Estocásticos , Estrés Mecánico , Viscosidad
3.
Artículo en Inglés | MEDLINE | ID: mdl-37645242

RESUMEN

Spectral inference on multiple networks is a rapidly-developing subfield of graph statistics. Recent work has demonstrated that joint, or simultaneous, spectral embedding of multiple independent networks can deliver more accurate estimation than individual spectral decompositions of those same networks. Such inference procedures typically rely heavily on independence assumptions across the multiple network realizations, and even in this case, little attention has been paid to the induced network correlation that can be a consequence of such joint embeddings. In this paper, we present a generalized omnibus embedding methodology and we provide a detailed analysis of this embedding across both independent and correlated networks, the latter of which significantly extends the reach of such procedures, and we describe how this omnibus embedding can itself induce correlation. This leads us to distinguish between inherent correlation-that is, the correlation that arises naturally in multisample network data-and induced correlation, which is an artifice of the joint embedding methodology. We show that the generalized omnibus embedding procedure is flexible and robust, and we prove both consistency and a central limit theorem for the embedded points. We examine how induced and inherent correlation can impact inference for network time series data, and we provide network analogues of classical questions such as the effective sample size for more generally correlated data. Further, we show how an appropriately calibrated generalized omnibus embedding can detect changes in real biological networks that previous embedding procedures could not discern, confirming that the effect of inherent and induced correlation can be subtle and transformative. By allowing for and deconstructing both forms of correlation, our methodology widens the scope of spectral techniques for network inference, with import in theory and practice.

4.
J Mach Learn Res ; 22(141): 1-49, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34650343

RESUMEN

The development of models and methodology for the analysis of data from multiple heterogeneous networks is of importance both in statistical network theory and across a wide spectrum of application domains. Although single-graph analysis is well-studied, multiple graph inference is largely unexplored, in part because of the challenges inherent in appropriately modeling graph differences and yet retaining sufficient model simplicity to render estimation feasible. This paper addresses exactly this gap, by introducing a new model, the common subspace independent-edge multiple random graph model, which describes a heterogeneous collection of networks with a shared latent structure on the vertices but potentially different connectivity patterns for each graph. The model encompasses many popular network representations, including the stochastic blockmodel. The model is both flexible enough to meaningfully account for important graph differences, and tractable enough to allow for accurate inference in multiple networks. In particular, a joint spectral embedding of adjacency matrices-the multiple adjacency spectral embedding-leads to simultaneous consistent estimation of underlying parameters for each graph. Under mild additional assumptions, the estimates satisfy asymptotic normality and yield improvements for graph eigenvalue estimation. In both simulated and real data, the model and the embedding can be deployed for a number of subsequent network inference tasks, including dimensionality reduction, classification, hypothesis testing, and community detection. Specifically, when the embedding is applied to a data set of connectomes constructed through diffusion magnetic resonance imaging, the result is an accurate classification of brain scans by human subject and a meaningful determination of heterogeneity across scans of different individuals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA