Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Small ; 20(7): e2306011, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806754

RESUMEN

Video-rate atomic force microscopy (AFM) is used to study the near-surface nanostructure dynamics of the ionic liquid ethylammonium nitrate (EAN) at a highly oriented pyrolytic graphite (HOPG) electrode as a function of potential in real-time for the first time. The effects of varying the surface potential and adding 10 wt% water on the nanostructure diffusion coefficient are probed. For both EAN and the 90 wt% EAN-water mixture, disk-like features ≈9 nm in diameter and 1 nm in height form above the Stern layer at all potentials. The nanostructure diffusion coefficient increases with potential (from OCP -0.5 V to OCP +0.5 V) and with added water. Nanostructure dynamics depends on both the magnitude and direction of the potential change. Upon switching the potential from OCP -0.5 V to OCP +0.5 V, a substantial increase in the diffusion coefficients is observed, likely due to the absence of solvophobic interactions between the nitrate (NO3 - ) anions and the ethylammonium (EA+ ) cations in the near-surface region. When the potential is reversed, EA+ is attracted to the Stern layer to replace NO3 - , but its movement is hindered by solvophobic attractions. The outcomes will aid applications, including electrochemical devices, catalysts, and lubricants.

2.
Small ; : e2311353, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573945

RESUMEN

Atomic force microscope (AFM) videos reveal the near-surface nanostructure and dynamics of the ionic liquids (ILs) 1-butyl-3-methylimidazolium dicyanamide (BMIM DCA) and 1-hexyl-3-methylimidazolium dicyanamide (HMIM DCA) above highly oriented pyrolytic graphite (HOPG) electrodes as a function of surface potential. Molecular dynamics (MD) simulations reveal the molecular-level composition of the nanostructures. In combination, AFM and MD show that the near-surface aggregates form via solvophobic association of the cation alkyl chains at the electrode interface. The diffusion coefficients of interfacial nanostructures are ≈0.01 nm2 s-1 and vary with the cation alkyl chain length and the surface potential. For each IL, the nanostructure diffusion coefficients are similar at open-circuit potential (OCP) and OCP + 1V, but BMIM DCA moves about twice as fast as HMIM DCA. At negative potentials, the diffusion coefficient decreases for BMIM DCA and increases for HMIM DCA. When the surface potential is switched from negative to positive, a sudden change in the direction of the nanostructure motion is observed for both BMIM DCA and HMIM DCA. No transient dynamics are noted following other potential jumps. This study provides a new fundamental understanding regarding the dynamics of electrochemically stable ILs at electrodes vital for the rational development of IL-based electrochemical devices.

3.
Small ; 19(12): e2204993, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36627266

RESUMEN

Interest in deep eutectic solvents (DESs), particularly for electrochemical applications, has boomed in the past decade because they are more versatile than conventional electrolyte solutions and are low cost, renewable, and non-toxic. The molecular scale lateral nanostructures as a function of potential at the solid-liquid interface-critical design parameters for the use of DESs as electrochemical solvents-are yet to be revealed. In this work, in situ amplitude modulated atomic force microscopy complemented by molecular dynamics simulations is used to probe the Stern and near-surface layers of the archetypal and by far most studied DES, 1:2 choline chloride:urea (reline), at the highly orientated pyrolytic graphite surface as a function of potential, to reveal highly ordered lateral nanostructures with unprecedented molecular resolution. This detail allows identification of choline, chloride, and urea in the Stern layer on graphite, and in some cases their orientations. Images obtained after the potential is switched from negative to positive show the dynamics of the Stern layer response, revealing that several minutes are required to reach equilibrium. These results provide valuable insight into the nanostructure and dynamics of DESs at the solid-liquid interface, with implications for the rational design of DESs for interfacial applications.

4.
Phys Chem Chem Phys ; 25(45): 31068-31076, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37946570

RESUMEN

Neutron diffraction with empirical potential structure refinement (EPSR) show the deep eutectic solvent (DES) 1 : 4 choline chloride : butyric acid is amphiphilically nanostructured. Nanostructure results from solvophobic interactions between the alkyl chains of the butyric acid hydrogen bond donor (HBD) and is retained with addition of 10 wt% water. EPSR fits to the diffraction data is used to produce a three-dimensional model of the liquid which is interrogated to reveal the interactions leading to the solvophobic effect, and therefore nanostructure, in this DES at atomic resolution. The model shows electrostatic and hydrogen bond interactions cause the cation, anion and HBD acid group to cluster into a polar domain, from which the acid alkyl chains are solvophobically excluded into theapolar domain. The polar and apolar domains percolate through the liquid in a bicontinuous sponge-like structure. The effect of adding 10 wt% water is probed, revealing that water molecules are sequestered around the cation and anion within the polar domain, while the neat bulk structure is retained. Alkyl chain packing in the apolar domain becomes slightly better-defined indicating water marginally strengthens solvophobic segregation. These findings reveal bulk self-assembled nanostructure can be produced in DESs via an amphiphilic HBD.

5.
Phys Chem Chem Phys ; 25(9): 6808-6816, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790213

RESUMEN

Surface active ionic liquids (SAILs) combine useful characteristics of both ionic liquids (ILs) and surfactants, hence are promising candidates for a wide range of applications. However, the effect of SAIL ionic structures on their physicochemical properties remains unclear, which limits their uptake. To address this knowledge gap, in this work we investigated the density, viscosity, surface tension, and corresponding critical micelle concentration in water, as well as gas absorption of SAILs with a variety of cation and anion structures. SAILs containing anions with linear alkyl chains have smaller molar volumes than those with branched alkyl chains, because linear alkyl chains are interdigitated to a greater extent, leading to more compact packing. This interdigitation also results in SAILs being about two orders of magnitude more viscous than comparable conventional ILs. SAILs at the liquid-air interface orient alkyl chains towards the air, leading to low surface tensions closer to n-alkanes than conventional ILs. Critical temperatures of about 900 K could be estimated for all SAILs from their surface tensions. When dissolved in water, SAILs adsorb at the liquid-air interface and lower the surface tension, like conventional surfactants in water, after which micelles form. Molecular simulations show that the micelles are spherical and that lower critical micelle concentrations correspond to the formation of aggregates with a larger number of ion pairs. CO2 and N2 absorption capacities are examined and we conclude that ionic liquids with larger non-polar domains absorb larger quantities of both gases.

6.
J Am Chem Soc ; 144(31): 14112-14120, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35901278

RESUMEN

Non-viral delivery is an important strategy for selective and efficient gene therapy, immunization, and RNA interference, which overcomes problems of genotoxicity and inherent immunogenicity associated with viral vectors. Liposomes and polymers are compelling candidates as carriers for intracellular, non-viral delivery, but maximal efficiencies of around 1% have been reported for the most advanced non-viral carriers. Here, we develop a library of dendronized bottlebrush polymers with controlled defects, displaying a level of precision surpassed only by biological molecules like DNA, RNA, and proteins. We test concurrent and competitive delivery of DNA and show for the first time that, while intracellular communication is thought to be an exclusively biomolecular phenomenon, such communication between synthetic macromolecular complexes can also take place. Our findings challenge the assumption that delivery agents behave as bystanders that enable transfection by passive intracellular release of genetic cargo and improve upon coarse strategies in intracellular carrier design lacking control over polymer sequence, architecture, and composition, leading to a hit-or-miss outcome. Understanding the communication that takes place between macromolecules will help improve the design of non-viral delivery agents and facilitate translation of genome engineering, vaccines, and nucleic acid-based therapies.


Asunto(s)
Liposomas , Polímeros , Comunicación Celular , ADN/metabolismo , Técnicas de Transferencia de Gen , Liposomas/metabolismo , Transfección
7.
Phys Chem Chem Phys ; 24(7): 4526-4532, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35119064

RESUMEN

The conformation of the polycation in the prototypical polymeric ionic liquid (PIL) poly(3-methyl-1-aminopropylimidazolylacrylamide) bis(trifluoromethylsulfonyl)imide (poly(3MAPIm)TFSI) was probed using small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) at 25 °C and 80 °C. Poly(3MAPIm)TFSI contains microvoids which lead to intense low q scattering that can be mitigated using mixtures of hydrogen- and deuterium-rich materials, allowing determination of the polycation conformation and radius of gyration (Rg). In the pure PIL, the polycation adopts a random coil conformation with Rg = 52 ± 0.5 Å. In contrast to conventional polymer melts, the pure PIL is not a theta solvent for the polycation. The TFSI- anions, which comprise 48% v/v of the PIL, are strongly attracted to the polycation and act like small solvent molecules which leads to chain swelling analogous to an entangled, semi-dilute, or concentrated polymer solution in a good solvent.

8.
Nat Mater ; 19(10): 1096-1101, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32367080

RESUMEN

Non-uniform metal deposition and dendrite formation in high-density energy storage devices reduces the efficiency, safety and life of batteries with metal anodes. Superconcentrated ionic-liquid electrolytes (for example 1:1 ionic liquid:alkali ion) coupled with anode preconditioning at more negative potentials can completely mitigate these issues, and therefore revolutionize high-density energy storage devices. However, the mechanisms by which very high salt concentration and preconditioning potential enable uniform metal deposition and prevent dendrite formation at the metal anode during cycling are poorly understood, and therefore not optimized. Here, we use atomic force microscopy and molecular dynamics simulations to unravel the influence of these factors on the interface chemistry in a sodium electrolyte, demonstrating how a molten-salt-like structure at the electrode surface results in dendrite-free metal cycling at higher rates. Such a structure will support the formation of a more favourable solid electrolyte interphase, accepted as being a critical factor in stable battery cycling. This new understanding will enable engineering of efficient anode electrodes by tuning the interfacial nanostructure via salt concentration and high-voltage preconditioning.

9.
J Chem Phys ; 154(21): 214504, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34240972

RESUMEN

We have investigated the structure and phase behavior of biocompatible, aqueous deep eutectic solvents by combining choline acetate, hydrogen aspartate, and aspartate amino acid salts with water as the sole molecular hydrogen bond donor. Using contrast-variation neutron diffraction, interpreted via computational modeling, we show how the interplay between anion structure and water content affects the hydrogen bond network structure in the liquid, which, in turn, influences the eutectic composition and temperature. These mixtures expand the current range choline amino acid ionic liquids under investigation for biomass processing applications to include higher melting point salts and also explain how the ionic liquids retain their desirable properties in aqueous solution.


Asunto(s)
Aminoácidos/química , Colina/química , Líquidos Iónicos/química , Solventes/química , Agua/química
10.
Nat Mater ; 18(12): 1350-1357, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406367

RESUMEN

Driven by the potential applications of ionic liquids (ILs) in many emerging electrochemical technologies, recent research efforts have been directed at understanding the complex ion ordering in these systems, to uncover novel energy storage mechanisms at IL-electrode interfaces. Here, we discover that surface-active ILs (SAILs), which contain amphiphilic structures inducing self-assembly, exhibit enhanced charge storage performance at electrified surfaces. Unlike conventional non-amphiphilic ILs, for which ion distribution is dominated by Coulombic interactions, SAILs exhibit significant and competing van der Waals interactions owing to the non-polar surfactant tails, leading to unusual interfacial ion distributions. We reveal that, at an intermediate degree of electrode polarization, SAILs display optimum performance, because the low-charge-density alkyl tails are effectively excluded from the electrode surfaces, whereas the formation of non-polar domains along the surface suppresses undesired overscreening effects. This work represents a crucial step towards understanding the unique interfacial behaviour and electrochemical properties of amphiphilic liquid systems showing long-range ordering, and offers insights into the design principles for high-energy-density electrolytes based on spontaneous self-assembly behaviour.

11.
Phys Chem Chem Phys ; 22(6): 3490-3498, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-31990285

RESUMEN

The liquid structures of six choline carboxylate/amino acid ionic liquids (bio-ILs) and their mixtures with water and various n-alkanols have been investigated by small-angle X-ray scattering (SAXS). The ILs exhibit long-range amphiphilic nanostructure comprised of polar and apolar domains that can be controlled by choice of anion, and which is tolerant to water dilution. Mixtures with n-alkanols can lead to marked changes in domain size and ordering. Utilising the Teubner-Strey model, we find amphiphilicity factors in many of these mixtures are comparable to those observed in conventional microemulsions, and that cooperative assembly in bio-IL/alkanol mixtures can enhance amphiphilicity, with potential to improve performance in a range of applications.


Asunto(s)
Aminoácidos/química , Ácidos Carboxílicos/química , Colina/química , Líquidos Iónicos/química , Nanoestructuras/química , Tensoactivos/química
12.
J Chem Phys ; 152(23): 234504, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32571054

RESUMEN

The protic ionic liquid diethylmethylammonium methanesulfonate ([DEMA][OMs]) was analyzed in depth by differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and broadband dielectric spectroscopy (BDS) under anhydrous conditions. Karl Fischer titration, NMR, and FT-IR spectra confirmed the high purity of [DEMA][OMs]. The melting point (37.7 °C) and the freezing point (14.0 °C) obtained by DSC agree well with the values determined by BDS (40.0 °C and 14.0 °C). The dc conductivity (σdc) above the melting/freezing point obeys the Vogel-Fulcher-Tammann (VFT) equation well, and thus, the proton conduction in [DEMA][OMs] is assumed to be dominated by the vehicle mechanism. In contrast, the σdc below the melting/freezing point can be fitted by the Arrhenius equation separately, and therefore, the proton conduction is most likely governed by the proton hopping mechanism. The non-negligible influence of previously reported low water content on the physicochemical properties of [DEMA][OMs] is found, indicating the importance of reducing water content as much as possible for the study of "intrinsic" properties of protic ionic liquids.

13.
Langmuir ; 35(48): 15692-15700, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31581771

RESUMEN

The quartz crystal microbalance (QCM) has been used to study how the interfacial layer of an ionic liquid dissolved in a polar oil at low weight percentages responds to changes in applied potential. The changes in surface composition at the QCM gold surface depend on both the magnitude and sign of the applied potential. The time-resolved response indicates that the relaxation kinetics are limited by the diffusion of ions in the interfacial region and not in the bulk, since there is no concentration dependence. The measured mass changes cannot be explained only in terms of simple ion exchange; the relative molecular volumes of the ions and the density changes in response to ion exclusion must be considered. The relaxation behavior of the potential between the electrodes upon disconnecting the applied potential is more complex than that observed for pure ionic liquids, but a measure of the surface charge can be extracted from the exponential decay when the rapid initial potential drop is accounted for. The adsorbed film at the gold surface consists predominantly of ionic liquid despite the low concentration, which is unsurprising given the surtactant-like structures of (some of) the ionic liquid ions. Changes in response to potential correspond to changes in the relative numbers of cations and anions, rather than a change in the oil composition. No evidence for an electric field induced change in viscosity is observed. This work shows conclusively that electric potentials can be used to control the surface composition, even in an oil-based system, and paves the way for other ion solvent studies.

14.
Angew Chem Int Ed Engl ; 58(37): 12887-12892, 2019 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-31177605

RESUMEN

We characterize the double-faced nature of hydrogen bonding in hydroxy-functionalized ionic liquids by means of neutron diffraction with isotopic substitution (NDIS), molecular dynamics (MD) simulations, and quantum chemical calculations. NDIS data are fit using the empirical potential structure refinement technique (EPSR) to elucidate the nearest neighbor H⋅⋅⋅O and O⋅⋅⋅O pair distribution functions for hydrogen bonds between ions of opposite charge and the same charge. Despite the presence of repulsive Coulomb forces, the cation-cation interaction is stronger than the cation-anion interaction. We compare the hydrogen-bond geometries of both "doubly charged hydrogen bonds" with those reported for molecular liquids, such as water and alcohols. In combination, the NDIS measurements and MD simulations reveal the subtle balance between the two types of hydrogen bonds: The small transition enthalpy suggests that the elusive like-charge attraction is almost competitive with conventional ion-pair formation.

15.
Faraday Discuss ; 206: 459-473, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28936497

RESUMEN

Ionic liquids have attracted significant interest as electrolytes for the electrodeposition of metals and semiconductors, but the details of the deposition processes are not yet well understood. In this paper, we give an overview of how the addition of various precursors (TaF5, SiCl4, and GaCl3) affects the solid/IL interfacial structure. In situ Atomic Force Microscopy (AFM) and vibrational spectroscopy have been employed to study the changes of the Au(111)/IL interface and in the electrolytes, respectively. Ionic liquids with the 1-butyl-1-methylpyrrolidinium ([Py1,4]+) cation and bis(trifluoromethylsulfonyl)amide ([TFSA]-), trifluoromethylsulfonate ([TfO]-) and tris(pentafluoroethyl)trifluorophosphate ([FAP]-) as anions were chosen for this purpose. In situ AFM force-distance measurements reveal that both the anion of the IL and the solutes (TaF5 or GaCl3) influence the Electrical Double Layer (EDL) structure of the Au(111)/IL interface, which can affect the deposition process of Ta and the morphology of the Ga electrodeposits, respectively. Furthermore, the concentration of the precursor can significantly alter the Au(111)/[Py1,4][FAP]-SiCl4 interfacial structure wherein the presence of 0.25 M SiCl4 a double layer structure forms that facilitates Si deposition. This study may provide some critical insights into the structure of the electrode/IL interface for specific applications.

16.
Langmuir ; 33(27): 6878-6884, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28627891

RESUMEN

Phospholipids are shown by solvent penetration experiments to form lamellar phases and spontaneously spawn vesicles in a wide range of deep eutectic solvents (DESs) composed of alkylammonium halide salts and glycerol or ethylene glycol, which are shown to be nanostructured by X-ray scattering. In contrast with molecular solvents, the chain melting temperature of each phospholipid, which determines the stability of the swellable bilayer phase, depends on the structure of the cation, anion, and molecular H-bond donor that constitute the DES. Chain melting is most sensitive to the length of the alkyl chain of the cation, which is partitioned between apolar domains in the bulk, nanostructured DES and those within the lipid bilayer. This is moderated by the structures of the anion and the molecular hydrogen bond donor, which determine the extent of polar/apolar segregation in the bulk liquid.


Asunto(s)
Nanoestructuras , Glicerol , Enlace de Hidrógeno , Membrana Dobles de Lípidos , Solventes
17.
Faraday Discuss ; 199: 311-322, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28422196

RESUMEN

Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li+ cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI- anion rich boundary layer at positive potentials is more lubricating than the Li+ cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li+ cations for both surfaces at negative potentials. However, at Au(111), the TFSI- rich boundary layer is less lubricating than the Li+ rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO3- rich boundary layer.

18.
Faraday Discuss ; 206: 93-112, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-28936499

RESUMEN

Biomass based biofuels are already an important energy source, and will increasingly be so in the future as the need for renewable energy rises. Due to their fast multiplication rates, algae can provide a sustainable supply of biomass, and are attractive because they do not compete with food crops for habitat. Here we show that biomass derived from Chlorella vulgaris and Spirulina platensis can be pretreated with low cost choline amino acid based ionic liquids to effectively yield lipids (30.6% and 51% total lipids) and sugars (71% and 26% total sugars). The ionic liquids dissolve the lipids, leaving behind a carbohydrate rich solid. The lipids were extracted with hexane, and the solid was subjected to enzyme hydrolysis to release fermentable sugars. These results open new pathways towards the dual production of biodiesel and bioethanol from algae, using low cost ionic liquids.


Asunto(s)
Carbohidratos/aislamiento & purificación , Chlorella vulgaris/química , Líquidos Iónicos/química , Lípidos/aislamiento & purificación , Agua/química , Aminoácidos/química , Biomasa , Carbohidratos/química , Colina/química , Líquidos Iónicos/economía , Lípidos/química , Estructura Molecular , Spirulina/química
19.
Soft Matter ; 13(7): 1364-1370, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28111683

RESUMEN

The formation of bilayer-based lyotropic liquid crystals and vesicle dispersions by phospholipids in a range of protic ionic liquids has been investigated by polarizing optical microscopy using isothermal penetration scans, differential scanning calorimetry, and small angle X-ray and neutron scattering. The stability and structure of both lamellar phases and vesicle dispersions is found to depend primarily on the underlying amphiphilic nanostructure of the ionic liquid itself. This finding has significant implications for the use of ionic liquids in soft and biological materials and for biopreservation, and demonstrates how vesicle structure and properties can be controlled through selection of cation and anion. For a given ionic liquid, systematic trends in bilayer thickness, chain-melting temperature and enthalpy increase with phospholipid acyl chain length, paralleling behaviour in aqueous systems.

20.
Phys Chem Chem Phys ; 19(4): 3297-3306, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28085165

RESUMEN

Deep eutectic solvents (DESs) are a mixture of a salt and a molecular hydrogen bond donor, which form a eutectic liquid with a depressed melting point. Quantum mechanical molecular dynamics (QM/MD) simulations have been used to probe the 1 : 2 choline chloride-urea (ChCl : U), choline chloride-ethylene glycol (ChCl : EG) and choline chloride-glycerol (ChCl : Gly) DESs. DES nanostructure and interactions between the ions is used to rationalise differences in DES eutectic point temperatures and viscosity. Simulations show that the structure of the bulk hydrogen bond donor is largely preserved for hydroxyl based hydrogen bond donors (ChCl:Gly and ChCl:EG), resulting in a smaller melting point depression. By contrast, ChCl:U exhibits a well-established hydrogen bond network between the salt and hydrogen bond donor, leading to a larger melting point depression. This extensive hydrogen bond network in ChCl:U also leads to substantially higher viscosity, compared to ChCl:EG and ChCl:Gly. Of the two hydroxyl based DESs, ChCl:Gly also exhibits a higher viscosity than ChCl:EG. This is attributed to the over-saturation of hydrogen bond donor groups in the ChCl:Gly bulk, which leads to more extensive hydrogen bond donor self-interaction and hence higher cohesive forces within the bulk liquid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA