Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
World J Microbiol Biotechnol ; 40(8): 255, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926189

RESUMEN

Thermophilic actinomycetes are commonly found in extreme environments and can thrive and adapt to extreme conditions. These organisms exhibit substantial variation and garnered significant interest due to their remarkable enzymatic activities. This study evaluated the potential of Streptomyces griseorubens NBR14 and Nocardiopsis synnemataformans NBRM9 strains to produce thermo-stable amylase via submerged fermentation using wheat and bean straw. The Box-Behnken design was utilized to determine the optimum parameters for amylase biosynthesis. Subsequently, amylase underwent partial purification and characterization. Furthermore, the obtained hydrolysate was applied for ethanol fermentation using Saccharomyces cerevisiae. The optimal parameters for obtaining the highest amylase activity by NBR14 (7.72 U/mL) and NBRM9 (26.54 U/mL) strains were found to be 40 and 30 °C, pH values of 7, incubation time of 7 days, and substrate concentration (3 and 2 g/100 mL), respectively. The NBR14 and NBRM9 amylase were partially purified, resulting in specific activities of 251.15 and 144.84 U/mg, as well as purification factors of 3.91 and 2.69-fold, respectively. After partial purification, the amylase extracted from NBR14 and NBRM9 showed the highest activity level at pH values of 9 and 7 and temperatures of 50 and 60 °C, respectively. The findings also indicated that the maximum velocity (Vmax) for NBR14 and NBRM9 amylase were 57.80 and 59.88 U/mL, respectively, with Km constants of 1.39 and 1.479 mM. After 48 h, bioethanol was produced at concentrations of 5.95 mg/mL and 9.29 mg/mL from hydrolyzed wheat and bean straw, respectively, through fermentation with S. cerevisiae. Thermophilic actinomycetes and their α-amylase yield demonstrated promising potential for sustainable bio-ethanol production from agro-byproducts.


Asunto(s)
Actinobacteria , Amilasas , Etanol , Fermentación , Saccharomyces cerevisiae , Temperatura , Triticum , Etanol/metabolismo , Amilasas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Actinobacteria/metabolismo , Actinobacteria/enzimología , Saccharomyces cerevisiae/metabolismo , Hidrólisis , Streptomyces/enzimología , Streptomyces/metabolismo , Estabilidad de Enzimas
2.
BMC Microbiol ; 22(1): 294, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36482332

RESUMEN

BACKGROUND: Bisphenol A (BPA) is a rapid spreading organic pollutant that widely used in many industries especially as a plasticizer in polycarbonate plastic and epoxy resins. BPA reported as a prominent endocrine disruptor compound that possesses estrogenic activity and fulminant toxicity. Pseudomonas putida YC-AE1 was isolated in our previous study and exerted a strong degradation capacity toward BPA at high concentrations; however, the molecular degradation mechanism is still enigmatic. RESULTS: We employed RNA sequencing to analyze the differentially expressed genes (DEGs) in the YC-AE1 strain upon BPA induction. Out of 1229 differentially expressed genes, 725 genes were positively regulated, and 504 genes were down-regulated. The pathways of microbial metabolism in diverse environments were significantly enriched among DEGs based on KEGG enrichment analysis. qRT-PCR confirm the involvement of BPA degradation relevant genes in accordance with RNA Seq data. The degradation pathway of BPA in YC-AE1 was proposed with specific enzymes and encoded genes. The role of cytochrome P450 (CYP450) in BPA degradation was further verified. Sever decrease in BPA degradation was recorded by YC-AE1 in the presence of CYP450 inhibitor. Subsequently, CYP450bisdB deficient YC-AE1 strain △ bisdB lost its ability toward BPA transformation comparing with the wild type. Furthermore, Transformation of E. coli with pET-32a-bisdAB empowers it to degrade 66 mg l-1 of BPA after 24 h. Altogether, the results showed the role of CYP450 in biodegradation of BPA by YC-AE1. CONCLUSION: In this study we propose the molecular basis and the potential role of YC-AE1cytochrome P450 monooxygenase in BPA catabolism.


Asunto(s)
Compuestos de Bencidrilo , Sistema Enzimático del Citocromo P-450 , Fenoles , Pseudomonas putida , Sistema Enzimático del Citocromo P-450/genética , Perfilación de la Expresión Génica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Compuestos de Bencidrilo/metabolismo , Fenoles/metabolismo
3.
Int J Biol Macromol ; 280(Pt 2): 135668, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306171

RESUMEN

The demand for advanced biomaterials in medical treatments is rapidly expanding. To address this demand, a nanocomposite of cellulose nanofiber (CNF) with chitosan (Ch) and graphene oxide (GO) was developed for burn wound treatment. The CNF-Ch-GO nanocomposites were characterized and their biological properties were evaluated. Microscopic images showed a uniform distribution of CNF, Ch, and GO with a porous structure. ATR-FTIR and XRD analyses confirmed the chemical structures, while a thermogravimetric study confirmed the stability of CNF-Ch-GO nanocomposite under a N2 atmosphere. The synthesized CNF-Ch-GO nanocomposite exhibited rapid absorption, absorbing 1781.7 ± 53.7 % PBS in 2 min. It demonstrated a Young's modulus of 11.90 ± 0.06 MPa in a hydrated condition, indicating its mechanical stability in water. Furthermore, it displayed excellent biocompatibility and hemocompatibility with 96.23 ± 12.21 % cell viability and 0.21 ± 0.08 % of hemolysis. Additionally, the blood clotting index of CNF-Ch-GO was comparable to that of standard dressing gauze. To enhance antimicrobial efficacy, CNF-Ch-GO was conjugated with lysozyme. This biotic and abiotic conjugation resulted in 92.17 % ± 3.02 % and 94.99 ± 2.1 % eradication of Escherichia coli and Staphylococcus aureus, respectively. The enhanced antimicrobial properties, biocompatibility, and mechanical stability of the superabsorbent CNF-Ch-GO nanocomposite indicate its significant potential for advanced burn wound healing applications.

4.
Food Chem ; 460(Pt 2): 140732, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106807

RESUMEN

Chemical pollutants such as mycotoxins and pesticides exert harmful effects on human health such as inflammation, oxidative stress, and cancer. Several strategies were applied for food decontamination, including physicochemical and biological strategies. The present review comprehensively discussed the recent efforts related to the biodegradation of eight food chemical contaminants, including mycotoxins, acrylamide, biogenic amines, N-nitrosamines, polycyclic aromatic hydrocarbons, bisphenol A, pesticides, and heavy metals by lactic acid bacteria (LAB). Biological detoxification by LAB such as Lactobacillus is a promising approach to remove the risks related to the presence of chemical and environmental pollutants in foodstuffs. It is a safe, efficient, environmentally friendly, and low-cost strategy to remove hazardous compounds. LAB can directly decrease these chemical pollutants by degradation or adsorption. Also, it can indirectly reduce the content of these pollutants by reducing their precursors. Hence, LAB can contribute to reducing chemical pollutants in contaminated foods and enhance food safety.


Asunto(s)
Biodegradación Ambiental , Contaminación de Alimentos , Inocuidad de los Alimentos , Contaminación de Alimentos/análisis , Humanos , Micotoxinas/metabolismo , Micotoxinas/análisis , Micotoxinas/química , Lactobacillales/metabolismo , Lactobacillus/metabolismo , Plaguicidas/metabolismo , Plaguicidas/química , Plaguicidas/análisis
5.
Polymers (Basel) ; 13(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34301067

RESUMEN

The unique properties and advantages of edible films over conventional food packaging have led the way to their extensive exploration in recent years. Moreover, the incorporation of bioactive components during their production has further enhanced the intrinsic features of packaging materials. This study was aimed to develop edible and bioactive food packaging films comprising yeast incorporated into bacterial cellulose (BC) in conjunction with carboxymethyl cellulose (CMC) and glycerol (Gly) to extend the shelf life of packaged food materials. First, yeast biomass and BC hydrogels were produced by Meyerozyma guilliermondii (MT502203.1) and Gluconacetobacter xylinus (ATCC53582), respectively, and then the films were developed ex situ by mixing 30 wt.% CMC, 30 wt.% Gly, 2 wt.% yeast dry biomass, and 2 wt.% BC slurry. FE-SEM observation showed the successful incorporation of Gly and yeast into the fibrous cellulose matrix. FTIR spectroscopy confirmed the development of composite films through chemical interaction between BC, CMC, Gly, and yeast. The developed BC/CMC/Gly/yeast composite films showed high water solubility (42.86%). The yeast-incorporated films showed antimicrobial activities against three microbial strains, including Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces aureus, by producing clear inhibition zones of 16 mm, 10 mm, and 15 mm, respectively, after 24 h. Moreover, the films were non-toxic against NIH-3T3 fibroblast cells. Finally, the coating of oranges and tomatoes with BC/CMC/Gly/yeast composites enhanced the shelf life at different storage temperatures. The BC/CMC/Gly/yeast composite film-coated oranges and tomatoes demonstrated acceptable sensory features such as odor and color, not only at 6 °C but also at room temperature and further elevated temperatures at 30 °C and 40 °C for up to two weeks. The findings of this study indicate that the developed BC/CMC/Gly/yeast composite films could be used as edible packaging material with high nutritional value and distinctive properties related to the film component, which would provide protection to foods and extend their shelf life, and thus could find applications in the food industry.

6.
Life Sci ; 279: 119644, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34048813

RESUMEN

Bacterial-derived extracellular vesicles could play a major role in attenuating and treating diseases. They play a major anti-infection role by modulating immune responses against pathogens and preventing infection by inhibiting pathogen localization and proliferation. In this study, outer membrane vesicles (ExHp-CD) released by Helicobacter pylori SS1 (H. pylori) and total antigens isolated from H. pylori SS1 (AgHp) were evaluated for their immunogenic potential and their effect on macrophage RAW 264.7 cells. Results demonstrated that both ExHp-CD and AgHp induced T helper 2 (Th2) immune response, which was reported to be important in immune protection against H. pylori infections. Both ExHp-CD and AgHp produced high levels of IL-10 and IL-4, while no significant levels of IL-12 p70 or IFN-γ were detected. However, ExHp-CD showed a better effect on macrophage RAW 264.7 cells compared to AgHp. Macrophage RAW 264.7 cells stimulated with 5, and 10 µg/mL of ExHp-CD showed an increased ratio of CD206 (M2 phenotype marker) and a decreased ratio of CD86 (M1 phenotype marker). Moreover, results suggested that the immunogenic effect that ExHp-CD possesses was attributed to their cargo of Epimerase_2 domain-containing protein (Epi_2D), Probable malate:quinone oxidoreductase (Pro_mqo), and Probable cytosol aminopeptidase (Pro_ca). Results demonstrated that ExHp-CD possesses an immunological activity to induce Th2 immune response against H. pylori infection with results comparable to AgHp. However, ExHp-CD showed higher efficacy regarding safety, biocompatibility, lack of toxicity, and hemocompatibility. Thus, it could serve as an immunogenic candidate with more desired characteristics.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Vesículas Extracelulares/inmunología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/inmunología , Inmunidad Celular/inmunología , Macrófagos/inmunología , Animales , Infecciones por Helicobacter/inmunología , Interacciones Huésped-Patógeno , Ratones , Células RAW 264.7
7.
Mater Sci Eng C Mater Biol Appl ; 110: 110633, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32204069

RESUMEN

The potential of external ions doped biomaterials has been extensively explored; however, the co-doped biomaterials remain typically unexplored for their biological properties for precise biomedical applications. The current study was aimed to explore the impact of structural features of Sr/Fe co-doped hydroxyapatite (HAp) bionanomaterial on osteoblastic proliferation and osteogenic differentiation for its application as a bone substitute. A 10 mol% isomorphous co-doping of strontium and iron with respect to calcium was carried into HAp in the solid solution. Raman spectroscopy verified the presence of major functional groups of apatite structure together with the carbonate peaks. The Sr/Fe co-doped HAp bionanomaterials showed slightly negative zeta potential (at neutral pH), versatile DLS particle size (140-205 nm), high BET surface area (186 m2/g), and narrow width pore size (13-19 nm). TG/DTA analysis showed low thermal stability of the Sr/Fe co-doped HAp groups. The nanoparticles showed an initial burst release of amoxicillin for 15 h followed by extended-release up to 81 h and demonstrated an excellent antibacterial activity by producing inhibition zones of 17.6 ± 0.3 mm and 19.5 mm ± 0.4 mm for Escherichia coli and Staphylococcus aureus. Live/dead cell staining and MTT assay confirmed the non-toxic nature of Sr/Fe co-doped HAp bionanomaterial towards MC3T3-E1 cells. Further, an improved ALP activity, increased calcium deposition, enhanced RUNX2 expression, and regulated OPN and OCN expression levels suggest in MC3T3-E1 cells demonstrate the maturation of osteoblasts. This study provides the unique advantages of the co-doping approach for the applications Sr/Fe co-doped HAp bionanomaterials as a bone substitute.


Asunto(s)
Sustitutos de Huesos , Diferenciación Celular/efectos de los fármacos , Durapatita , Hierro , Nanoestructuras/química , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Estroncio , Animales , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Línea Celular , Durapatita/química , Durapatita/farmacología , Hierro/química , Hierro/farmacología , Ratones , Osteoblastos/citología , Estroncio/química , Estroncio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA