RESUMEN
Miniaturized and wireless near-infrared (NIR) based neural recorders with optical powering and data telemetry have been introduced as a promising approach for safe long-term monitoring with the smallest physical dimension among state-of-the-art standalone recorders. However, a main challenge for the NIR based neural recording ICs is to maintain robust operation in the presence of light-induced parasitic short circuit current from junction diodes. This is especially true when the signal currents are kept small to reduce power consumption. In this work, we present a light-tolerant and low-power neural recording IC for motor prediction that can fully function in up to 300 µW/mm2 of light exposure. It achieves best-in-class power consumption of 0.57 µW at 38° C with a 4.1 NEF pseudo-resistorless amplifier, an on-chip neural feature extractor, and individual mote level gain control. Applying the 20-channel pre-recorded neural signals of a monkey, the IC predicts finger position and velocity with correlation coefficient up to 0.870 and 0.569, respectively, with individual mote level gain control enabled. In addition, wireless measurement is demonstrated through optical power and data telemetry using a custom PV/LED GaAs chip wire bonded to the proposed IC.
RESUMEN
We propose a 0.25 × 0.25 × 0.3 mm (~0.02 mm3) optically powered mote for visual cortex stimulation to restore vision. Up to 1024 implanted motes can be individually addressed. The complete StiMote system was confirmed fully functional when optically powered and cortex stimulation was confirmed in-vivo with a live rat brain.
RESUMEN
A key challenge for near-infrared (NIR) powered neural recording ICs is to maintain robust operation in the presence of parasitic short circuit current from junction diodes when exposed to light. This is especially so when intentional currents are kept small to reduce power consumption. We present a neural recording IC that is tolerant up to 300 µW/mm2 light exposure (above tissue limit) and consumes 0.57 µW at 38°C, making it lowest power among standalone motes while incorporating on-chip feature extraction and individual gain control.