Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell ; 35(5): 574-85, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19748354

RESUMEN

Ring-shaped AAA+ ATPases control a variety of cellular processes by substrate unfolding and remodeling of macromolecular structures. However, how ATP hydrolysis within AAA+ rings is regulated and coupled to mechanical work is poorly understood. Here we demonstrate coordinated ATP hydrolysis within m-AAA protease ring complexes, conserved AAA+ machines in the inner membrane of mitochondria. ATP binding to one AAA subunit inhibits ATP hydrolysis by the neighboring subunit, leading to coordinated rather than stochastic ATP hydrolysis within the AAA ring. Unbiased genetic screens define an intersubunit signaling pathway involving conserved AAA motifs and reveal an intimate coupling of ATPase activities to central AAA pore loops. Coordinated ATP hydrolysis between adjacent subunits is required for membrane dislocation of substrates, but not for substrate processing. These findings provide insight into how AAA+ proteins convert energy derived from ATP hydrolysis into mechanical work.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Fúngicas/metabolismo , Metaloendopeptidasas/metabolismo , Membranas Mitocondriales/enzimología , Transducción de Señal , Levaduras/enzimología , Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Regulación Alostérica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Secuencia Conservada , Metabolismo Energético , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Hidrólisis , Cinética , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Puntual , Subunidades de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato , Levaduras/genética , Levaduras/crecimiento & desarrollo
2.
J Biol Chem ; 286(6): 4404-11, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21147776

RESUMEN

FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.


Asunto(s)
Metaloendopeptidasas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Microscopía por Crioelectrón , Humanos , Metaloendopeptidasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Multimerización de Proteína/fisiología , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
EMBO J ; 26(2): 325-35, 2007 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-17245427

RESUMEN

Maturation of cytochrome c peroxidase (Ccp1) in mitochondria occurs by the subsequent action of two conserved proteases in the inner membrane: the m-AAA protease, an ATP-dependent protease degrading misfolded proteins and mediating protein processing, and the rhomboid protease Pcp1, an intramembrane cleaving peptidase. Neither the determinants preventing complete proteolysis of certain substrates by the m-AAA protease, nor the obligatory requirement of the m-AAA protease for rhomboid cleavage is currently understood. Here, we describe an intimate and unexpected functional interplay of both proteases. The m-AAA protease mediates the ATP-dependent membrane dislocation of Ccp1 independent of its proteolytic activity. It thereby ensures the correct positioning of Ccp1 within the membrane bilayer allowing intramembrane cleavage by rhomboid. Decreasing the hydrophobicity of the Ccp1 transmembrane segment facilitates its dislocation from the membrane and renders rhomboid cleavage m-AAA protease-independent. These findings reveal for the first time a non-proteolytic function of the m-AAA protease during mitochondrial biogenesis and rationalise the requirement of a preceding step for intramembrane cleavage by rhomboid.


Asunto(s)
Citocromo-c Peroxidasa/metabolismo , Proteínas Fúngicas/metabolismo , Metaloendopeptidasas/fisiología , Mitocondrias/enzimología , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Citocromo-c Peroxidasa/química , Fluidez de la Membrana , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Levaduras
5.
J Biol Chem ; 280(20): 20132-9, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15772085

RESUMEN

Mitochondria harbor a conserved proteolytic system that mediates the complete degradation of organellar proteins. ATP-dependent proteases, like a Lon protease in the matrix space and m- and i-AAA proteases in the inner membrane, degrade malfolded proteins within mitochondria and thereby protect the cell against mitochondrial damage. Proteolytic breakdown products include peptides and free amino acids, which are constantly released from mitochondria. It remained unclear, however, whether the turnover of malfolded proteins involves only ATP-dependent proteases or also oligopeptidases within mitochondria. Here we describe the identification of Mop112, a novel metallopeptidase of the pitrilysin family M16 localized in the intermembrane space of yeast mitochondria. This peptidase exerts important functions for the maintenance of the respiratory competence of the cells that overlap with the i-AAA protease. Deletion of MOP112 did not affect the stability of misfolded proteins in mitochondria, but resulted in an increased release from the organelle of peptides, generated upon proteolysis of mitochondrial proteins. We find that the previously described metallopeptidase saccharolysin (or Prd1) exerts a similar function in the intermembrane space. The identification of peptides released from peptidase-deficient mitochondria by mass spectrometry indicates a dual function of Mop112 and saccharolysin: they degrade peptides generated upon proteolysis of proteins both in the intermembrane and matrix space and presequence peptides cleaved off by specific processing peptidases in both compartments. These results suggest that the turnover of mitochondrial proteins is mediated by the sequential action of ATP-dependent proteases and oligopeptidases, some of them localized in the intermembrane space.


Asunto(s)
Metaloendopeptidasas/metabolismo , Metaloproteasas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , ADN de Hongos/genética , Calor , Metaloendopeptidasas/genética , Metaloproteasas/genética , Proteínas Mitocondriales/genética , Mutación , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Partículas Submitocóndricas/metabolismo
6.
J Biol Chem ; 280(4): 2691-9, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15556950

RESUMEN

Conserved ATP-dependent proteases ensure the quality control of mitochondrial proteins and control essential steps in mitochondrial biogenesis. Recent studies demonstrated that non-assembled mitochondrially encoded proteins are degraded to peptides and amino acids that are released from mitochondria. Here, we have characterized peptides extruded from mitochondria by mass spectrometry and identified 270 peptides that are exported in an ATP- and temperature-dependent manner. The peptides originate from 51 mitochondrially and nuclearly encoded proteins localized mainly in the matrix and inner membrane, indicating that peptides generated by the activity of all known mitochondrial ATP-dependent proteases can be released from the organelle. Pulse-labeling experiments in logarithmically growing yeast cells revealed that approximately 6-12% of preexisting and newly imported proteins is degraded and contribute to this peptide pool. Under respiring conditions, we observed an increased proteolysis of newly imported proteins that suggests a higher turnover rate of respiratory chain components and thereby rationalizes the predominant appearance of representatives of this functional class in the detected peptide pool. These results demonstrated a constant efflux of peptides from mitochondria and provided new insight into the stability of the mitochondrial proteome and the efficiency of mitochondrial biogenesis.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Péptidos/química , Proteínas/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Complejo IV de Transporte de Electrones/metabolismo , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/química , Espectrometría de Masas , Datos de Secuencia Molecular , Transporte de Proteínas , Proteoma , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA