RESUMEN
Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides ( ) near the 3' end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the to double mutation severely affects the viability of bacteria. However, whether Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.
Asunto(s)
Secuencia de Bases , Proteínas de Unión al GTP/metabolismo , ARN Ribosómico 16S/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al GTP/genética , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Proteínas de Unión al ARN/genéticaRESUMEN
The carboxypeptidase A enzyme from Metarhizium anisopliae (MeCPA) has broader specificity than the mammalian A-type carboxypeptidases, making it a more useful reagent for the removal of short affinity tags and disordered residues from the C-termini of recombinant proteins. When secreted from baculovirus-infected insect cells, the yield of pure MeCPA was 0.25mg per liter of conditioned medium. Here, we describe a procedure for the production of MeCPA in the cytosol of Escherichia coli that yields approximately 0.5mg of pure enzyme per liter of cell culture. The bacterial system is much easier to scale up and far less expensive than the insect cell system. The expression strategy entails maintaining the proMeCPA zymogen in a soluble state by fusing it to the C-terminus of maltose-binding protein (MBP) while simultaneously overproducing the protein disulfide isomerase DsbC in the cytosol from a separate plasmid. Unexpectedly, we found that the yield of active and properly oxidized MeCPA was highest when coexpressed with DsbC in BL21(DE3) cells that do not also contain mutations in the trxB and gor genes. Moreover, the formation of active MeCPA was only partially dependent on the disulfide-isomerase activity of DsbC. Intriguingly, we observed that most of the active MeCPA was generated after cell lysis and amylose affinity purification of the MBP-proMeCPA fusion protein, during the time that the partially purified protein was held overnight at 4°C prior to activation with thermolysin. Following removal of the MBP-propeptide by thermolysin digestion, active MeCPA (with a C-terminal polyhistidine tag) was purified to homogeneity by immobilized metal affinity chromatography (IMAC), ion exchange chromatography and gel filtration.
Asunto(s)
Carboxipeptidasas A/aislamiento & purificación , Escherichia coli/genética , Metarhizium/enzimología , Secuencia de Aminoácidos , Baculoviridae/genética , Carboxipeptidasas A/química , Carboxipeptidasas A/genética , Carboxipeptidasas A/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/genética , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/aislamiento & purificación , Proteínas de Unión a Maltosa/metabolismo , Metarhizium/química , Metarhizium/genética , Metarhizium/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , SolubilidadRESUMEN
ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the 1531AUCACCUCCUUA1542 sequence at the 3' end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a "twist" for noneukaryotic ERA proteins by also recognizing the CCUCC.
Asunto(s)
Bacterias/enzimología , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Cristalografía por Rayos X , GTP Fosfohidrolasas/genética , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Alineación de SecuenciaRESUMEN
Carboxypeptidases may serve as tools for removal of C-terminal affinity tags. In the present study, we describe the expression and purification of an A-type carboxypeptidase from the fungal pathogen Metarhizium anisopliae (MeCPA) that has been genetically engineered to facilitate the removal of polyhistidine tags from the C-termini of recombinant proteins. A complete, systematic analysis of the specificity of MeCPA in comparison with that of bovine carboxypeptidase A (BoCPA) was carried out. Our results indicate that the specificity of the two enzymes is similar but not identical. Histidine residues are removed more efficiently by MeCPA. The very inefficient digestion of peptides with C-terminal lysine or arginine residues, along with the complete inability of the enzyme to remove a C-terminal proline, suggests a strategy for designing C-terminal affinity tags that can be trimmed by MeCPA (or BoCPA) to produce a digestion product with a homogeneous endpoint.
Asunto(s)
Marcadores de Afinidad/metabolismo , Carboxipeptidasas A/metabolismo , Bovinos/metabolismo , Histidina/metabolismo , Metarhizium/enzimología , Marcadores de Afinidad/química , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Carboxipeptidasas A/química , Histidina/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Cloruro de Sodio , Especificidad por SustratoRESUMEN
Among methyltransferases, KsgA and the reaction it catalyzes are conserved throughout evolution. However, the specifics of substrate recognition by the enzyme remain unknown. Here we report structures of Aquifex aeolicus KsgA, in its ligand-free form, in complex with RNA, and in complex with both RNA and S-adenosylhomocysteine (SAH, reaction product of cofactor S-adenosylmethionine), revealing critical structural information on KsgA-RNA and KsgA-SAH interactions. Moreover, the structures show how conformational changes that occur upon RNA binding create the cofactor-binding site. There are nine conserved functional motifs (motifs I-VIII and X) in KsgA. Prior to RNA binding, motifs I and VIII are flexible, each exhibiting two distinct conformations. Upon RNA binding, the two motifs become stabilized in one of these conformations, which is compatible with the binding of SAH. Motif X, which is also stabilized upon RNA binding, is directly involved in the binding of SAH.
Asunto(s)
Coenzimas/química , Metiltransferasas/química , ARN/química , S-Adenosilhomocisteína/química , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Catálisis , Coenzimas/metabolismo , Cristalografía por Rayos X , Bacterias Gramnegativas/enzimología , Ligandos , Metiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , ARN/metabolismo , S-Adenosilhomocisteína/metabolismoRESUMEN
Francisella tularensis, a potential bioweapon, causes a rare infectious disease called tularemia in humans and animals. The macrophage growth locus A (MglA) protein from F. tularensis associates with RNA polymerase to positively regulate the expression of multiple virulence factors that are required for its survival and replication within macrophages. The MglA protein was overproduced in Escherichia coli, purified and crystallized. The crystals diffracted to 7.5 A resolution at the Advanced Photon Source, Argonne National Laboratory and belonged to the hexagonal space group P6(1) or P6(5), with unit-cell parameters a = b = 125, c = 54 A.
Asunto(s)
Proteínas Bacterianas/química , Francisella tularensis/química , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Expresión GénicaRESUMEN
Insolubility of recombinant proteins in Escherichia coli is a major impediment to their production for structural and functional studies. One way to circumvent this problem is to fuse an aggregation-prone protein to a highly soluble partner. E. coli maltose-binding protein (MBP) has emerged as one of the most effective solubilizing agents. In this chapter, we describe how to construct combinatorially-tagged His(6)MBP fusion proteins by recombinational cloning and how to evaluate their yield and solubility. We also describe a procedure to determine how efficiently a His(6)MBP fusion protein is cleaved by tobacco etch virus (TEV) protease in E. coli and a method to assess the solubility of the target protein after it has been separated from His(6)MBP.
Asunto(s)
Proteínas Portadoras/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Histidina/química , Oligopéptidos/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Animales , Fusión Artificial Génica , Cromatografía de Afinidad , Electroforesis en Gel de Poliacrilamida , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , Vectores Genéticos , Proteínas de Unión a Maltosa , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad , SonicaciónRESUMEN
Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes the fulminating disease tularemia and is considered to be a potential bioweapon. F. tularensis pathogenicity island proteins play a key role in modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm of macrophages. The 23 kDa pathogenicity island protein IglC is essential for the survival and proliferation of F. tularensis in macrophages. Seeking to gain some insight into its function, we determined the crystal structure of IglC at 1.65 A resolution. IglC adopts a beta-sandwich conformation that exhibits no similarity with any known protein structure.
Asunto(s)
Biología Computacional/métodos , Cristalografía por Rayos X/métodos , Francisella tularensis/metabolismo , Islas Genómicas , Proteínas Bacterianas , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteómica/métodos , Factores de Virulencia/químicaRESUMEN
Bacterial ribonuclease III (RNase III) can affect RNA structure and gene expression in either of two ways: as a processing enzyme that cleaves double-stranded (ds) RNA, or as a binding protein that binds but does not cleave dsRNA. We previously proposed a model of the catalytic complex of RNase III with dsRNA based on three crystal structures, including the endonuclease domain of RNase III with and without bound metal ions and a dsRNA binding protein complexed with dsRNA. We also reported a noncatalytic assembly observed in the crystal structure of an RNase III mutant, which binds but does not cleave dsRNA, complexed with dsRNA. We hypothesize that the RNase III*dsRNA complex can exist in two functional forms, a catalytic complex and a noncatalytic assembly, and that in between the two forms there may be intermediate states. Here, we present four crystal structures of RNase III complexed with dsRNA, representing possible intermediates.
Asunto(s)
ARN Bicatenario/metabolismo , Ribonucleasa III/metabolismo , Secuencia de Bases , Clonación Molecular , Cristalografía por Rayos X , Dimerización , Escherichia coli/genética , Análisis de Fourier , Modelos Químicos , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína , ARN Bicatenario/química , Ribonucleasa III/química , Ribonucleasa III/genética , Espectrometría de Masa por Ionización de Electrospray , Espectrometría Raman , Moldes Genéticos , Difracción de Rayos XRESUMEN
The plague-causing bacterium Yersinia pestis utilizes a contact-dependent (type III) secretion system (T3SS) to transport virulence factors from the bacterial cytosol directly into the interior of mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. The type III secretion apparatus is composed of 20-25 different Yersinia secretion (Ysc) proteins. We report here the structure of YscE, the smallest Ysc protein, which is a dimer in solution. The probable mode of oligomerization is discussed.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Yersinia pestis/química , Animales , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cristalografía por Rayos X , Dimerización , Fagocitosis/fisiología , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología , Factores de Virulencia/metabolismo , Yersinia pestis/fisiologíaRESUMEN
Many proteins that accumulate in the form of insoluble aggregates when they are overproduced in Escherichia coli can be rendered soluble by fusing them to E. coli maltose binding protein (MBP), and this will often enable them to fold in to their biologically active conformations. Yet, although it is an excellent solubility enhancer, MBP is not a particularly good affinity tag for protein purification. To compensate for this shortcoming, we have engineered and successfully tested Gateway destination vectors for the production of dual His6MBP-tagged fusion proteins in the cytoplasm and periplasm of E. coli. The MBP moiety improves the yield and solubility of its fusion partners while the hexahistidine tag (His-tag) serves to facilitate their purification. The availability of a vector that targets His6MBP fusion proteins to the periplasm expands the utility of this dual tagging approach to include proteins that contain disulfide bonds or are toxic in the bacterial cytoplasm.
Asunto(s)
Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Histidina/metabolismo , Oligopéptidos/metabolismo , Periplasma/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Escherichia coli/genética , Expresión Génica , Vectores Genéticos/genética , Histidina/genética , Proteínas de Unión a Maltosa , Datos de Secuencia Molecular , Oligopéptidos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleasas/aislamiento & purificación , Ribonucleasas/metabolismo , SolubilidadRESUMEN
Yersinia pestis, the causative agent of the plague, employs a type III secretion system (T3SS) to secrete and translocate virulence factors into to the cytoplasm of mammalian host cells. One of the secreted virulence factors is YopR. Little is known about the function of YopR other than that it is secreted into the extracellular milieu during the early stages of infection and that it contributes to virulence. Hoping to gain some insight into the function of YopR, we determined the crystal structure of its protease-resistant core domain, which consists of residues 38-149 out of 165 amino acids. The core domain is composed of five alpha-helices that display unexpected structural similarity with one domain of YopN, a central regulator of type III secretion in Y. pestis. This finding raises the possibility that YopR may play a role in the regulation of type III secretion.
Asunto(s)
Proteínas Bacterianas/química , Factores de Virulencia/química , Yersinia pestis/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Datos de Secuencia Molecular , Péptido Hidrolasas/química , Estructura Secundaria de Proteína , Estructura Terciaria de ProteínaRESUMEN
Human dual-specificity phosphatase 7 (DUSP7/Pyst2) is a 320-residue protein that belongs to the mitogen-activated protein kinase phosphatase (MKP) subfamily of dual-specificity phosphatases. Although its precise biological function is still not fully understood, previous reports have demonstrated that DUSP7 is overexpressed in myeloid leukemia and other malignancies. Therefore, there is interest in developing DUSP7 inhibitors as potential therapeutic agents, especially for cancer. Here, the purification, crystallization and structure determination of the catalytic domain of DUSP7 (Ser141-Ser289/C232S) at 1.67 Å resolution are reported. The structure described here provides a starting point for structure-assisted inhibitor-design efforts and adds to the growing knowledge base of three-dimensional structures of the dual-specificity phosphatase family.
Asunto(s)
Fosfatasas de Especificidad Dual/química , Proteínas de Neoplasias/química , Proteínas Recombinantes de Fusión/química , Secuencias de Aminoácidos , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Fosfatasas de Especificidad Dual/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Electricidad EstáticaRESUMEN
Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-Å resolution. As observed in several crystal structures of TEV protease, the C-terminus (â¼20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by â¼10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1' position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k(cat) and K(m) for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.
Asunto(s)
Endopeptidasas/química , Endopeptidasas/metabolismo , Potyviridae/enzimología , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalización , Endopeptidasas/genética , Escherichia coli/genética , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Modelos Moleculares , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Potyviridae/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas Virales/genéticaRESUMEN
Crystal structures of cleaved and uncleaved forms of the YscU cytoplasmic domain, an essential component of the type III secretion system (T3SS) in Yersinia pestis, have been solved by single-wavelength anomolous dispersion and refined with X-ray diffraction data extending up to atomic resolution (1.13 A). These crystallographic studies provide structural insights into the conformational changes induced upon auto-cleavage of the cytoplasmic domain of YscU. The structures indicate that the cleaved fragments remain bound to each other. The conserved NPTH sequence that contains the site of the N263-P264 peptide bond cleavage is found on a beta-turn which, upon cleavage, undergoes a major reorientation of the loop away from the catalytic N263, resulting in altered electrostatic surface features at the site of cleavage. Additionally, a significant conformational change was observed in the N-terminal linker regions of the cleaved and noncleaved forms of YscU which may correspond to the molecular switch that influences substrate specificity. The YscU structures determined here also are in good agreement with the auto-cleavage mechanism described for the flagellar homolog FlhB and E. coli EscU.
Asunto(s)
Proteínas Bacterianas/química , Proteínas de la Membrana/química , Fragmentos de Péptidos/química , Yersinia pestis/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutación , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Yersinia pestis/genéticaRESUMEN
The plague-causing bacterium Yersinia pestis utilizes a type III secretion system to deliver effector proteins into mammalian cells where they interfere with signal transduction pathways that mediate phagocytosis and the inflammatory response. Effector proteins are injected through a hollow needle structure composed of the protein YscF. YscG and YscE act as "chaperones" to prevent premature polymerization of YscF in the cytosol of the bacterium prior to assembly of the needle. Here, we report the crystal structure of the YscEFG protein complex at 1.8 A resolution. Overall, the structure is similar to that of the analogous PscEFG complex from the Pseudomonas aeruginosa type III secretion system, but there are noteworthy differences. The structure confirms that, like PscG, YscG is a member of the tetratricopeptide repeat family of proteins. YscG binds tightly to the C-terminal half of YscF, implying that it is this region of YscF that controls its polymerization into the needle structure. YscE interacts with the N-terminal tetratricopeptide repeat motif of YscG but makes very little direct contact with YscF. Its function may be to stabilize the structure of YscG and/or to participate in recruiting the complex to the secretion apparatus. No electron density could be observed for the 49 N-terminal residues of YscF. This and additional evidence suggest that the N-terminus of YscF is disordered in the complex with YscE and YscG. As expected, conserved residues in the C-terminal half of YscF mediate important intra- and intermolecular interactions in the complex. Moreover, the phenotypes of some previously characterized mutations in the C-terminal half of YscF can be rationalized in terms of the structure of the heterotrimeric YscEFG complex.
Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/química , Chaperonas Moleculares/química , Yersinia pestis/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cristalografía por Rayos X , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Conformación ProteicaRESUMEN
Members of the ribonuclease III (RNase III) family are double-stranded RNA (dsRNA) specific endoribonucleases characterized by a signature motif in their active centers and a two-base 3' overhang in their products. While Dicer, which produces small interfering RNAs, is currently the focus of intense interest, the structurally simpler bacterial RNase III serves as a paradigm for the entire family. Here, we present the crystal structure of an RNase III-product complex, the first catalytic complex observed for the family. A 7 residue linker within the protein facilitates induced fit in protein-RNA recognition. A pattern of protein-RNA interactions, defined by four RNA binding motifs in RNase III and three protein-interacting boxes in dsRNA, is responsible for substrate specificity, while conserved amino acid residues and divalent cations are responsible for scissile-bond cleavage. The structure reveals a wealth of information about the mechanism of RNA hydrolysis that can be extrapolated to other RNase III family members.