Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 571(7765): 398-402, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292548

RESUMEN

A decline in stem cell function impairs tissue regeneration during ageing, but the role of the stem-cell-supporting niche in ageing is not well understood. The small intestine is maintained by actively cycling intestinal stem cells that are regulated by the Paneth cell niche1,2. Here we show that the regenerative potential of human and mouse intestinal epithelium diminishes with age owing to defects in both stem cells and their niche. The functional decline was caused by a decrease in stemness-maintaining Wnt signalling due to production of Notum, an extracellular Wnt inhibitor, in aged Paneth cells. Mechanistically, high activity of mammalian target of rapamycin complex 1 (mTORC1) in aged Paneth cells inhibits activity of peroxisome proliferator activated receptor α (PPAR-α)3, and lowered PPAR-α activity increased Notum expression. Genetic targeting of Notum or Wnt supplementation restored function of aged intestinal organoids. Moreover, pharmacological inhibition of Notum in mice enhanced the regenerative capacity of aged stem cells and promoted recovery from chemotherapy-induced damage. Our results reveal a role of the stem cell niche in ageing and demonstrate that targeting of Notum can promote regeneration of aged tissues.


Asunto(s)
Envejecimiento , Senescencia Celular , Esterasas/metabolismo , Mucosa Intestinal/patología , Células de Paneth/metabolismo , Regeneración , Envejecimiento/fisiología , Animales , Senescencia Celular/fisiología , Esterasas/antagonistas & inhibidores , Esterasas/biosíntesis , Femenino , Humanos , Mucosa Intestinal/fisiología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , PPAR alfa/metabolismo , Células de Paneth/patología , Receptores Acoplados a Proteínas G/metabolismo , Nicho de Células Madre , Células Madre/patología , Proteínas Wnt/antagonistas & inhibidores , Vía de Señalización Wnt
2.
J Infect Dis ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38365889

RESUMEN

Progressive multifocal leukoencephalopathy (PML) is a rare neurological condition associated with reactivation of dormant JC polyomavirus (JCPyV). In this study, we characterized gene expression and JCPyV rearrangements in PML brain tissue. Infection of white matter astrocytes and oligodendrocytes as well as occasional brain cortex neurons was shown. PML brain harbored exclusively rearranged JCPyV variants. Viral transcripts covered the whole genome on both strands. Strong differential expression of human genes associated with neuroinflammation, blood-brain-barrier permeability and neurodegenerative diseases was shown. Pathway analysis revealed wide immune activation in PML brain. The study provides novel insights into the pathogenesis of PML.

3.
New Phytol ; 241(2): 747-763, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964509

RESUMEN

Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.


Asunto(s)
Arabidopsis , Fucosa , Fucosa/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Boro/metabolismo , Arabidopsis/metabolismo , Polisacáridos/metabolismo
4.
Alzheimer Dis Assoc Disord ; 38(2): 133-139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38602449

RESUMEN

BACKGROUND: The gut microbiome is a complex system within the human gastrointestinal tract. The bacteria play a significant role in human health, and some can promote inflammation and pathologic processes through chemical interactions or metabolites. Gut microbiome dysbiosis has been linked to some neurological and other diseases. Here we aimed to examine microbiome differences between patients with a progressive neurological disorder, idiopathic normal pressure hydrocephalus (iNPH), compared with healthy controls (CO). METHODS: We recruited 37 neurologically healthy CO and 10 patients with shunted iNPH. We evaluated these participants' cognition using the CERAD-NB test battery and CDR test, and collected a variety of information, including about dietary habits and health. We also collected fecal samples, which were subjected to 16S amplicon sequencing to analyze differences in gut microbiome composition. RESULTS: We found that the iNPH group exhibited significantly different abundances of 10 bacterial genera compared with the CO group. The Escherichia/Shigella and Anaeromassilibacillus genera were most remarkably increased. Other increased genera were Butyrivibrio , Duncaniella , and an unidentified genus. The decreased genera were Agathobaculum , Paramuribaculum , Catenibacterium , and 2 unidentified genera. CONCLUSIONS: Here we report the first identified microbiome differences in iNPH patients compared with healthy controls.


Asunto(s)
Microbioma Gastrointestinal , Hidrocéfalo Normotenso , Humanos , Microbioma Gastrointestinal/fisiología , Hidrocéfalo Normotenso/microbiología , Masculino , Femenino , Anciano , Disbiosis/microbiología , Heces/microbiología , Anciano de 80 o más Años , Estudios de Casos y Controles , Persona de Mediana Edad , ARN Ribosómico 16S/genética
5.
Nucleic Acids Res ; 50(12): 6801-6819, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35748858

RESUMEN

The robustness and sensitivity of gene networks to environmental changes is critical for cell survival. How gene networks produce specific, chronologically ordered responses to genome-wide perturbations, while robustly maintaining homeostasis, remains an open question. We analysed if short- and mid-term genome-wide responses to shifts in RNA polymerase (RNAP) concentration are influenced by the known topology and logic of the transcription factor network (TFN) of Escherichia coli. We found that, at the gene cohort level, the magnitude of the single-gene, mid-term transcriptional responses to changes in RNAP concentration can be explained by the absolute difference between the gene's numbers of activating and repressing input transcription factors (TFs). Interestingly, this difference is strongly positively correlated with the number of input TFs of the gene. Meanwhile, short-term responses showed only weak influence from the TFN. Our results suggest that the global topological traits of the TFN of E. coli shape which gene cohorts respond to genome-wide stresses.


Asunto(s)
Escherichia coli , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Escherichia coli/genética , ARN Polimerasas Dirigidas por ADN/genética
6.
J Infect Dis ; 228(7): 829-833, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36988117

RESUMEN

Progressive multifocal leukoencephalopathy (PML) is a severe neurological condition caused by reactivation of JC polyomavirus (JCPyV) in immunosuppression. Asymptomatic JCPyV persists in peripheral tissues. Upon reactivation, neurotropic rearrangements may emerge, and the virus gains access to the brain. To assess the mechanisms of PML pathogenesis, brain tissue material from PML patients was collected for small RNA sequencing. Upregulation of 8 microRNAs (miRNAs) in PML brain was validated using quantitative microRNA polymerase chain reaction (PCR). Bioinformatics tools were utilized to identify major associations of the upregulated miRNAs: neuroinflammation and blood-brain barrier disruption. The results indicate involvement of human miRNA regulation in PML pathogenesis.


Asunto(s)
Virus JC , Leucoencefalopatía Multifocal Progresiva , MicroARNs , Humanos , Leucoencefalopatía Multifocal Progresiva/genética , Leucoencefalopatía Multifocal Progresiva/patología , Virus JC/genética , MicroARNs/genética , Encéfalo/patología , Secuencia de Bases
7.
Plant Cell Physiol ; 64(10): 1204-1219, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37674261

RESUMEN

Stilbenes accumulate in Scots pine heartwood where they have important roles in protecting wood from decaying fungi. They are also part of active defense responses, and their production is induced by different (a)biotic stressors. The specific transcriptional regulators as well as the enzyme responsible for activating the stilbene precursor cinnamate in the pathway are still unknown. UV-C radiation was the first discovered artificial stress activator of the pathway. Here, we describe a large-scale transcriptomic analysis of pine needles in response to UV-C and treatment with translational inhibitors, both activating the transcription of stilbene pathway genes. We used the data to identify putative candidates for the missing CoA ligase and for pathway regulators. We further showed that the pathway is transcriptionally activated by phosphatase inhibitor, ethylene and jasmonate treatments, as in grapevine, and that the stilbene synthase promoter retains its inducibility in some of the tested conditions in Arabidopsis, a species that normally does not synthesize stilbenes. Shared features between gymnosperm and angiosperm regulation and partially retained inducibility in Arabidopsis suggest that pathway regulation occurs not only via ancient stress-response pathway(s) but also via species-specific regulators. Understanding which genes control the biosynthesis of stilbenes in Scots pine aids breeding of more resistant trees.


Asunto(s)
Arabidopsis , Estilbenos , Estilbenos/metabolismo , Transcriptoma , Arabidopsis/genética , Perfilación de la Expresión Génica , Árboles/genética
8.
Mol Ecol ; 32(22): 5932-5943, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37855154

RESUMEN

The Earth's polar regions are low rates of inter- and intraspecific diversification. An extreme mammalian example is the Arctic ringed seal (Pusa hispida hispida), which is assumed to be panmictic across its circumpolar Arctic range. Yet, local Inuit communities in Greenland and Canada recognize several regional variants; a finding supported by scientific studies of body size variation. It is however unclear whether this phenotypic variation reflects plasticity, morphs or distinct ecotypes. Here, we combine genomic, biologging and survey data, to document the existence of a unique ringed seal ecotype in the Ilulissat Icefjord (locally 'Kangia'), Greenland; a UNESCO World Heritage site, which is home to the most productive marine-terminating glacier in the Arctic. Genomic analyses reveal a divergence of Kangia ringed seals from other Arctic ringed seals about 240 kya, followed by secondary contact since the Last Glacial Maximum. Despite ongoing gene flow, multiple genomic regions appear under strong selection in Kangia ringed seals, including candidate genes associated with pelage coloration, growth and osmoregulation, potentially explaining the Kangia seal's phenotypic and behavioural uniqueness. The description of 'hidden' diversity and adaptations in yet another Arctic species merits a reassessment of the evolutionary processes that have shaped Arctic diversity and the traditional view of this region as an evolutionary freezer. Our study highlights the value of indigenous knowledge in guiding science and calls for efforts to identify distinct populations or ecotypes to understand how these might respond differently to environmental change.


Asunto(s)
Phocidae , Animales , Phocidae/genética , Canadá , Mamíferos , Regiones Árticas , Groenlandia
9.
BMC Genomics ; 23(1): 818, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494615

RESUMEN

BACKGROUND: Leuconostoc gelidum and Leuconostoc gasicomitatum have dual roles in foods. They may spoil cold-stored packaged foods but can also be beneficial in kimchi fermentation. The impact in food science as well as the limited number of publicly available genomes prompted us to create pangenomes and perform genomic taxonomy analyses starting from de novo sequencing of the genomes of 37 L. gelidum/L. gasicomitatum strains from our culture collection. Our aim was also to evaluate the recently proposed change in taxonomy as well as to study the genomes of strains with different lifestyles in foods. METHODS: We selected as diverse a set of strains as possible in terms of sources, previous genotyping results and geographical distribution, and included also 10 publicly available genomes in our analyses. We studied genomic taxonomy using pairwise average nucleotide identity (ANI) and calculation of digital DNA-DNA hybridisation (dDDH) scores. Phylogeny analyses were done using the core gene set of 1141 single-copy genes and a set of housekeeping genes commonly used for lactic acid bacteria. In addition, the pangenome and core genome sizes as well as some properties, such as acquired antimicrobial resistance (AMR), important due to the growth in foods, were analysed. RESULTS: Genome relatedness indices and phylogenetic analyses supported the recently suggested classification that restores the taxonomic position of L. gelidum subsp. gasicomitatum back to the species level as L. gasicomitatum. Genome properties, such as size and coding potential, revealed limited intraspecies variation and showed no attribution to the source of isolation. The distribution of the unique genes between species and subspecies was not associated with the previously documented lifestyle in foods. None of the strains carried any acquired AMR genes or genes associated with any known form of virulence. CONCLUSION: Genome-wide examination of strains confirms that the proposition to restore the taxonomic position of L. gasicomitatum is justified. It further confirms that the distribution and lifestyle of L. gelidum and L. gasicomitatum in foods have not been driven by the evolution of functional and phylogenetic diversification detectable at the genome level.


Asunto(s)
ADN , Leuconostoc , Filogenia , Leuconostoc/genética , Microbiología de Alimentos
10.
J Med Virol ; 94(3): 1227-1231, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34698407

RESUMEN

While most of the spontaneous mutations in the viral genome have no functional, diagnostic, or clinical consequences, some have. In February 2021, we noticed in Southern Finland coronavirus disease 2019 cases where two commercial polymerase chain reaction (PCR) analyses failed to recognize the used N gene target but recognized the other target gene of severe acute respiratory syndrome coronavirus 2. Complete viral genome sequence analysis of the strains revealed several mutations that were not found at that time in public databases. A short 3 bp deletion and three subsequent single nucleotide polymorphisms in the N gene were found exactly at the site where an early published and widely used N gene-based PCR primer is located, explaining the negative results in the N gene PCR. Later the variant strain was identified as a member of the B.1.1.318 Pango lineage that had first been found from Nigerian samples collected in January 2021. This strain shares with the Beta variant the S gene E484K mutation linked to impaired vaccine protection, but differs from this variant in several other ways, for example by deletions in the N gene region. Mutations in the N gene causing diagnostic resistance and on the other hand E484K mutation in the causing altered infectivity warrants careful inspection on virus variants that might get underdiagnosed.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Mutación , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética
11.
Ann Neurol ; 90(3): E1-E12, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34021620

RESUMEN

OBJECTIVE: Alterations of the gut microbiome in Parkinson disease (PD) have been repeatedly demonstrated. However, little is known about whether such alterations precede disease onset and how they relate to risk and prodromal markers of PD. We investigated associations of these features with gut microbiome composition. METHODS: Established risk and prodromal markers of PD as well as factors related to diet/lifestyle, bowel function, and medication were studied in relation to bacterial α-/ß-diversity, enterotypes, and differential abundance in stool samples of 666 elderly TREND (Tübingen Evaluation of Risk Factors for Early Detection of Neurodegeneration) study participants. RESULTS: Among risk and prodromal markers, physical inactivity, occupational solvent exposure, and constipation showed associations with α-diversity. Physical inactivity, sex, constipation, possible rapid eye movement sleep behavior disorder (RBD), and smoking were associated with ß-diversity. Subthreshold parkinsonism and physical inactivity showed an interaction effect. Among other factors, age and urate-lowering medication were associated with α- and ß-diversity. Constipation was highest in individuals with the Firmicutes-enriched enterotype, and physical inactivity was most frequent in the Bacteroides-enriched enterotype. Constipation was lowest and subthreshold parkinsonism least frequent in individuals with the Prevotella-enriched enterotype. Differentially abundant taxa were linked to constipation, physical inactivity, possible RBD, smoking, and subthreshold parkinsonism. Substantia nigra hyperechogenicity, olfactory loss, depression, orthostatic hypotension, urinary/erectile dysfunction, PD family history, and the prodromal PD probability showed no significant microbiome associations. INTERPRETATION: Several risk and prodromal markers of PD are associated with gut microbiome composition. However, the impact of the gut microbiome on PD risk and potential microbiome-dependent subtypes in the prodrome of PD need further investigation based on prospective clinical and (multi)omics data in incident PD cases. ANN NEUROL 2021;90:E1-E12.

12.
Mov Disord ; 37(8): 1644-1653, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35723531

RESUMEN

BACKGROUND: The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES: Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS: Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS: We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS: Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Butiratos , Depresión/genética , Epigénesis Genética , Microbioma Gastrointestinal/genética , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/microbiología
13.
PLoS Genet ; 15(9): e1008358, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31557158

RESUMEN

Stressful life events are major environmental risk factors for anxiety disorders, although not all individuals exposed to stress develop clinical anxiety. The molecular mechanisms underlying the influence of environmental effects on anxiety are largely unknown. To identify biological pathways mediating stress-related anxiety and resilience to it, we used the chronic social defeat stress (CSDS) paradigm in male mice of two inbred strains, C57BL/6NCrl (B6) and DBA/2NCrl (D2), that differ in their susceptibility to stress. Using a multi-omics approach, we identified differential mRNA, miRNA and protein expression changes in the bed nucleus of the stria terminalis (BNST) and blood cells after chronic stress. Integrative gene set enrichment analysis revealed enrichment of mitochondrial-related genes in the BNST and blood of stressed mice. To translate these results to human anxiety, we investigated blood gene expression changes associated with exposure-induced panic attacks. Remarkably, we found reduced expression of mitochondrial-related genes in D2 stress-susceptible mice and in exposure-induced panic attacks in humans, but increased expression of these genes in B6 stress-susceptible mice. Moreover, stress-susceptible vs. stress-resilient B6 mice displayed more mitochondrial cross-sections in the post-synaptic compartment after CSDS. Our findings demonstrate mitochondrial-related alterations in gene expression as an evolutionarily conserved response in stress-related behaviors and validate the use of cross-species approaches in investigating the biological mechanisms underlying anxiety disorders.


Asunto(s)
Ansiedad/genética , Ansiedad/metabolismo , Estrés Psicológico/metabolismo , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Genómica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , MicroARNs/genética , Mitocondrias , Proteómica , ARN Mensajero/genética , Núcleos Septales/metabolismo , Estrés Psicológico/fisiopatología , Transcriptoma/genética
14.
BMC Genomics ; 22(1): 28, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413101

RESUMEN

BACKGROUND: Psychrotrophic lactic acid bacteria (LAB) species are the dominant species in the microbiota of cold-stored modified-atmosphere-packaged food products and are the main cause of food spoilage. Despite the importance of psychrotrophic LAB, their response to cold or heat has not been studied. Here, we studied the transcriptome-level cold- and heat-shock response of spoilage lactic acid bacteria with time-series RNA-seq for Le. gelidum, Lc. piscium, and P. oligofermentans at 0 °C, 4 °C, 14 °C, 25 °C, and 28 °C. RESULTS: We observed that the cold-shock protein A (cspA) gene was the main cold-shock protein gene in all three species. Our results indicated that DEAD-box RNA helicase genes (cshA, cshB) also play a critical role in cold-shock response in psychrotrophic LAB. In addition, several RNase genes were involved in cold-shock response in Lc. piscium and P. oligofermentans. Moreover, gene network inference analysis provided candidate genes involved in cold-shock response. Ribosomal proteins, tRNA modification, rRNA modification, and ABC and efflux MFS transporter genes clustered with cold-shock response genes in all three species, indicating that these genes could be part of the cold-shock response machinery. Heat-shock treatment caused upregulation of Clp protease and chaperone genes in all three species. We identified transcription binding site motifs for heat-shock response genes in Le. gelidum and Lc. piscium. Finally, we showed that food spoilage-related genes were upregulated at cold temperatures. CONCLUSIONS: The results of this study provide new insights on the cold- and heat-shock response of psychrotrophic LAB. In addition, candidate genes involved in cold- and heat-shock response predicted using gene network inference analysis could be used as targets for future studies.


Asunto(s)
Lactobacillales , Frío , Microbiología de Alimentos , Respuesta al Choque Térmico/genética , Lactobacillales/genética , Transcriptoma
15.
BMC Genomics ; 22(1): 266, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853520

RESUMEN

BACKGROUND: The pathogen Listeria (L.) monocytogenes is known to survive heat, cold, high pressure, and other extreme conditions. Although the response of this pathogen to pH, osmotic, temperature, and oxidative stress has been studied extensively, its reaction to the stress produced by high pressure processing HPP (which is a preservation method in the food industry), and the activated gene regulatory network (GRN) in response to this stress is still largely unknown. RESULTS: We used RNA sequencing transcriptome data of L. monocytogenes (ScottA) treated at 400 MPa and 8∘C, for 8 min and combined it with current information in the literature to create a transcriptional regulation database, depicting the relationship between transcription factors (TFs) and their target genes (TGs) in L. monocytogenes. We then applied network component analysis (NCA), a matrix decomposition method, to reconstruct the activities of the TFs over time. According to our findings, L. monocytogenes responded to the stress applied during HPP by three statistically different gene regulation modes: survival mode during the first 10 min post-treatment, repair mode during 1 h post-treatment, and re-growth mode beyond 6 h after HPP. We identified the TFs and their TGs that were responsible for each of the modes. We developed a plausible model that could explain the regulatory mechanism that L. monocytogenes activated through the well-studied CIRCE operon via the regulator HrcA during the survival mode. CONCLUSIONS: Our findings suggest that the timely activation of TFs associated with an immediate stress response, followed by the expression of genes for repair purposes, and then re-growth and metabolism, could be a strategy of L. monocytogenes to survive and recover extreme HPP conditions. We believe that our results give a better understanding of L. monocytogenes behavior after exposure to high pressure that may lead to the design of a specific knock-out process to target the genes or mechanisms. The results can help the food industry select appropriate HPP conditions to prevent L. monocytogenes recovery during food storage.


Asunto(s)
Listeria monocytogenes , Listeria , Manipulación de Alimentos , Microbiología de Alimentos , Almacenamiento de Alimentos , Listeria monocytogenes/genética
16.
BMC Genomics ; 22(1): 117, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579201

RESUMEN

BACKGROUND: High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). RESULTS: The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. CONCLUSIONS: We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP.


Asunto(s)
Listeria monocytogenes , Microbiología de Alimentos , Industria de Procesamiento de Alimentos , Listeria monocytogenes/genética , Temperatura , Transcriptoma
17.
Ann Neurol ; 88(2): 320-331, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32441370

RESUMEN

OBJECTIVE: Alterations of the gut microbiome in Parkinson disease (PD) have been repeatedly demonstrated. However, little is known about whether such alterations precede disease onset and how they relate to risk and prodromal markers of PD. We investigated associations of these features with gut microbiome composition. METHODS: Established risk and prodromal markers of PD as well as factors related to diet/lifestyle, bowel function, and medication were studied in relation to bacterial α-/ß-diversity, enterotypes, and differential abundance in stool samples of 666 elderly TREND (Tübingen Evaluation of Risk Factors for Early Detection of Neurodegeneration) study participants. RESULTS: Among risk and prodromal markers, physical activity, occupational solvent exposure, and constipation showed associations with α-diversity. Physical activity, sex, constipation, possible rapid eye movement sleep behavior disorder (RBD), and smoking were associated with ß-diversity. Subthreshold parkinsonism and physical activity showed an interaction effect. Among other factors, age and urate-lowering medication were associated with α- and ß-diversity. Physical inactivity and constipation were highest in individuals with the Firmicutes-enriched enterotype. Constipation was lowest and subthreshold parkinsonism least frequent in individuals with the Prevotella-enriched enterotype. Differentially abundant taxa were linked to constipation, physical activity, possible RBD, smoking, and subthreshold parkinsonism. Substantia nigra hyperechogenicity, olfactory loss, depression, orthostatic hypotension, urinary/erectile dysfunction, PD family history, and the prodromal PD probability showed no significant microbiome associations. INTERPRETATION: Several risk and prodromal markers of PD are associated with gut microbiome composition. However, the impact of the gut microbiome on PD risk and potential microbiome-dependent subtypes in the prodrome of PD need further investigation based on prospective clinical and (multi)omics data in incident PD cases. ANN NEUROL 2020;88:320-331.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/epidemiología , Síntomas Prodrómicos , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Estreñimiento/diagnóstico , Estreñimiento/epidemiología , Estreñimiento/microbiología , Depresión/diagnóstico , Depresión/epidemiología , Depresión/microbiología , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/microbiología , Estudios Prospectivos , Factores de Riesgo , Autoinforme , Factores Sexuales , Fumar/efectos adversos , Fumar/epidemiología
18.
Plant Cell ; 30(11): 2813-2837, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30361234

RESUMEN

Guard cells control the aperture of stomatal pores to balance photosynthetic carbon dioxide uptake with evaporative water loss. Stomatal closure is triggered by several stimuli that initiate complex signaling networks to govern the activity of ion channels. Activation of SLOW ANION CHANNEL1 (SLAC1) is central to the process of stomatal closure and requires the leucine-rich repeat receptor-like kinase (LRR-RLK) GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), among other signaling components. Here, based on functional analysis of nine Arabidopsis thaliana ghr1 mutant alleles identified in two independent forward-genetic ozone-sensitivity screens, we found that GHR1 is required for stomatal responses to apoplastic reactive oxygen species, abscisic acid, high CO2 concentrations, and diurnal light/dark transitions. Furthermore, we show that the amino acid residues of GHR1 involved in ATP binding are not required for stomatal closure in Arabidopsis or the activation of SLAC1 anion currents in Xenopus laevis oocytes and present supporting in silico and in vitro evidence suggesting that GHR1 is an inactive pseudokinase. Biochemical analyses suggested that GHR1-mediated activation of SLAC1 occurs via interacting proteins and that CALCIUM-DEPENDENT PROTEIN KINASE3 interacts with GHR1. We propose that GHR1 acts in stomatal closure as a scaffolding component.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología
19.
BMC Genomics ; 21(1): 455, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32615922

RESUMEN

BACKGROUND: High pressure processing (HPP; i.e. 100-600 MPa pressure depending on product) is a non-thermal preservation technique adopted by the food industry to decrease significantly foodborne pathogens, including Listeria monocytogenes, from food. However, susceptibility towards pressure differs among diverse strains of L. monocytogenes and it is unclear if this is due to their intrinsic characteristics related to genomic content. Here, we tested the barotolerance of 10 different L. monocytogenes strains, from food and food processing environments and widely used reference strains including clinical isolate, to pressure treatments with 400 and 600 MPa. Genome sequencing and genome comparison of the tested L. monocytogenes strains were performed to investigate the relation between genomic profile and pressure tolerance. RESULTS: None of the tested strains were tolerant to 600 MPa. A reduction of more than 5 log10 was observed for all strains after 1 min 600 MPa pressure treatment. L. monocytogenes strain RO15 showed no significant reduction in viable cell counts after 400 MPa for 1 min and was therefore defined as barotolerant. Genome analysis of so far unsequenced L. monocytogenes strain RO15, 2HF33, MB5, AB199, AB120, C7, and RO4 allowed us to compare the gene content of all strains tested. This revealed that the three most pressure tolerant strains had more than one CRISPR system with self-targeting spacers. Furthermore, several anti-CRISPR genes were detected in these strains. Pan-genome analysis showed that 10 prophage genes were significantly associated with the three most barotolerant strains. CONCLUSIONS: L. monocytogenes strain RO15 was the most pressure tolerant among the selected strains. Genome comparison suggests that there might be a relationship between prophages and pressure tolerance in L. monocytogenes.


Asunto(s)
Conservación de Alimentos , Genoma Bacteriano , Listeria monocytogenes/genética , Sistemas CRISPR-Cas , Metilación de ADN , Genómica , Viabilidad Microbiana , Presión , RNA-Seq , Estándares de Referencia
20.
Clin Exp Allergy ; 50(10): 1148-1158, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32865840

RESUMEN

BACKGROUND: After the Second World War, the population living in the Karelian region was strictly divided by the "iron curtain" between Finland and Russia. This resulted in different lifestyle, standard of living, and exposure to the environment. Allergic manifestations and sensitization to common allergens have been much more common on the Finnish compared to the Russian side. OBJECTIVE: The remarkable allergy disparity in the Finnish and Russian Karelia calls for immunological explanations. METHODS: Young people, aged 15-20 years, in the Finnish (n = 69) and Russian (n = 75) Karelia were studied. The impact of genetic variation on the phenotype was studied by a genome-wide association analysis. Differences in gene expression (transcriptome) were explored from the blood mononuclear cells (PBMC) and related to skin and nasal epithelium microbiota and sensitization. RESULTS: The genotype differences between the Finnish and Russian populations did not explain the allergy gap. The network of gene expression and skin and nasal microbiota was richer and more diverse in the Russian subjects. When the function of 261 differentially expressed genes was explored, innate immunity pathways were suppressed among Russians compared to Finns. Differences in the gene expression paralleled the microbiota disparity. High Acinetobacter abundance in Russians correlated with suppression of innate immune response. High-total IgE was associated with enhanced anti-viral response in the Finnish but not in the Russian subjects. CONCLUSIONS AND CLINICAL RELEVANCE: Young populations living in the Finnish and Russian Karelia show marked differences in genome-wide gene expression and host contrasting skin and nasal epithelium microbiota. The rich gene-microbe network in Russians seems to result in a better-balanced innate immunity and associates with low allergy prevalence.


Asunto(s)
Disparidades en el Estado de Salud , Hipersensibilidad/epidemiología , Inmunidad Innata , Microbiota/inmunología , Adolescente , Factores de Edad , Femenino , Finlandia/epidemiología , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Interacciones Microbiota-Huesped , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Hipersensibilidad/virología , Inmunidad Innata/genética , Inmunoglobulina E/sangre , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/microbiología , Leucocitos Mononucleares/virología , Masculino , Mucosa Nasal/inmunología , Mucosa Nasal/microbiología , Mucosa Nasal/virología , Polimorfismo de Nucleótido Simple , Prevalencia , Federación de Rusia/epidemiología , Piel/inmunología , Piel/microbiología , Piel/virología , Transcriptoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA