RESUMEN
BACKGROUND: Cross-sectional studies indicate that hippocampal function is abnormal across stages of psychosis. Neural theories of psychosis pathophysiology suggest that dysfunction worsens with illness stage. Here, we test the hypothesis that hippocampal function is impaired in the early stage of psychosis and declines further over the next 2 years. METHODS: We measured hippocampal function over 2 years using a scene processing task in 147 participants (76 individuals in the early stage of a non-affective psychotic disorder and 71 demographically similar healthy control individuals). Two-year follow-up was completed in 97 individuals (50 early psychosis, 47 healthy control). Voxelwise longitudinal analysis of activation in response to scenes was carried out within a hippocampal region of interest to test for group differences at baseline and a group by time interaction. RESULTS: At baseline, we observed lower anterior hippocampal activation in the early psychosis group relative to the healthy control group. Contrary to our hypothesis, hippocampal activation remained consistent and did not show the predicted decline over 2 years in the early psychosis group. Healthy controls showed a modest reduction in hippocampal activation after 2 years. CONCLUSIONS: The results of this study suggest that hippocampal dysfunction in early psychosis does not worsen over 2 years and highlight the need for longer-term longitudinal studies.
Asunto(s)
Imagen por Resonancia Magnética , Trastornos Psicóticos , Humanos , Estudios de Seguimiento , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Trastornos Psicóticos/diagnóstico por imagen , Hipocampo/diagnóstico por imagenRESUMEN
The bed nucleus of the stria terminalis (BNST) is emerging as a critical region in multiple psychiatric disorders including anxiety, PTSD, and alcohol and substance use disorders. In conjunction with growing knowledge of the BNST, an increasing number of studies examine connections of the BNST and how those connections impact BNST function. The importance of this BNST network is highlighted by rodent studies demonstrating that projections from other brain regions regulate BNST activity and influence BNST-related behavior. While many animal and human studies replicate the components of the BNST network, to date, structural connections between the BNST and insula have only been described in rodents and have yet to be shown in humans. In this study, we used probabilistic tractography to examine BNST-insula structural connectivity in humans. We used two methods of dividing the insula: 1) anterior and posterior insula, to be consistent with much of the existing insula literature; and 2) eight subregions that represent informative cytoarchitectural divisions. We found evidence of a BNST-insula structural connection in humans, with the strongest BNST connectivity localized to the anteroventral insula, a region of agranular cortex. BNST-insula connectivity differed by hemisphere and was moderated by sex. These results translate rodent findings to humans and lay an important foundation for future studies examining the role of BNST-insula pathways in psychiatric disorders.
Asunto(s)
Corteza Cerebral/anatomía & histología , Imagen de Difusión Tensora/métodos , Red Nerviosa/anatomía & histología , Núcleos Septales/anatomía & histología , Caracteres Sexuales , Adolescente , Adulto , Corteza Cerebral/diagnóstico por imagen , Imagen Eco-Planar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Núcleos Septales/diagnóstico por imagen , Factores Sexuales , Adulto JovenRESUMEN
BACKGROUND: Anxiety disorders are highly prevalent and cause substantial suffering and impairment. Whereas the amygdala has well-established contributions to anxiety, evidence from rodent and nonhuman primate models suggests that the bed nucleus of the stria terminalis (BNST) may play a critical, and possibly distinct, role in human anxiety disorders. The BNST mediates hypervigilance and anticipatory anxiety in response to an unpredictable or ambiguous threat, core symptoms of social anxiety, yet little is known about the BNST's role in social anxiety. METHODS: Functional magnetic resonance imaging was used to measure neural responses during a cued anticipation task with an unpredictable, predictable threat, and predictable neutral cues followed by threat or neutral images. Social anxiety was examined using a dimensional approach (N = 44 adults). RESULTS: For unpredictable cues, higher social anxiety was associated with lower BNST-amygdala connectivity. For unpredictable images, higher social anxiety was associated with greater connectivity between the BNST and both the ventromedial prefrontal cortex and the posterior cingulate cortex and lower connectivity between the BNST and postcentral gyrus. Social anxiety moderated the BNST-amygdala dissociation for unpredictable images; higher social anxiety was associated with BNST > amygdala response to unpredictable threat relative to unpredictable neutral images. CONCLUSIONS: Social anxiety was associated with alterations in BNST responses to unpredictability, particularly in the BNST's interactions with other brain regions, including the amygdala and prefrontal cortex. To our knowledge, these findings provide the first evidence for the BNST's role in social anxiety, which may be a potential new target for prevention and intervention.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Fobia Social/fisiopatología , Núcleos Septales/diagnóstico por imagen , Núcleos Septales/fisiopatología , Adolescente , Adulto , Animales , Señales (Psicología) , Miedo/fisiología , Miedo/psicología , Femenino , Humanos , Masculino , Fobia Social/psicología , Adulto JovenRESUMEN
Anxiety and addiction disorders are two of the most common mental disorders in the United States, and are typically chronic, disabling, and comorbid. Emerging evidence suggests the bed nucleus of the stria terminalis (BNST) mediates both anxiety and addiction through connections with other brain regions, including the amygdala and nucleus accumbens. Although BNST structural connections have been identified in rodents and a limited number of structural connections have been verified in non-human primates, BNST connections have yet to be described in humans. Neuroimaging is a powerful tool for identifying structural and functional circuits in vivo. In this study, we examined BNST structural and functional connectivity in a large sample of humans. The BNST showed structural and functional connections with multiple subcortical regions, including limbic, thalamic, and basal ganglia structures, confirming structural findings in rodents. We describe two novel connections in the human brain that have not been previously reported in rodents or non-human primates, including a structural connection with the temporal pole, and a functional connection with the paracingulate gyrus. The findings of this study provide a map of the BNST's structural and functional connectivity across the brain in healthy humans. In large part, the BNST neurocircuitry in humans is similar to the findings from rodents and non-human primates; however, several connections are unique to humans. Future explorations of BNST neurocircuitry in anxiety and addiction disorders have the potential to reveal novel mechanisms underlying these disabling psychiatric illnesses.
Asunto(s)
Red Nerviosa/fisiología , Núcleos Septales/fisiología , Amígdala del Cerebelo/fisiología , Encéfalo/anatomía & histología , Encéfalo/fisiología , Imagen de Difusión Tensora , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Red Nerviosa/anatomía & histología , Vías Nerviosas/fisiología , Descanso , Núcleos Septales/anatomía & histología , Caracteres SexualesRESUMEN
BACKGROUND: Almost half of children with an inhibited temperament will develop social anxiety disorder by late adolescence. Importantly, this means that half of children with an inhibited temperament will not develop social anxiety disorder. Studying adults with an inhibited temperament provides a unique opportunity to identify neural signatures of both risk and resilience to social anxiety disorder. METHODS: Functional magnetic resonance imaging (fMRI) was used to measure brain activation during the anticipation of viewing fear faces in 34 young adults (17 inhibited, 17 uninhibited). To identify neural signatures of risk, we tested for group differences in functional activation and connectivity in regions implicated in social anxiety disorder, including the prefrontal cortex, amygdala, and insula. To identify neural signatures of resilience, we tested for correlations between brain activation and both emotion regulation and social anxiety scores. RESULTS: Inhibited subjects had greater activation of a prefrontal network when anticipating viewing fear faces, relative to uninhibited subjects. No group differences were identified in the amygdala. Inhibited subjects had more negative connectivity between the rostral anterior cingulate cortex (ACC) and the bilateral amygdala. Within the inhibited group, those with fewer social anxiety symptoms and better emotion regulation skills had greater ACC activation and greater functional connectivity between the ACC and amygdala. CONCLUSIONS: These findings suggest that engaging regulatory prefrontal regions during anticipation may be a protective factor, or putative neural marker of resilience, in high-risk individuals. Cognitive training targeting prefrontal cortex function may provide protection against anxiety, especially in high-risk individuals, such as those with inhibited temperament.
Asunto(s)
Encéfalo/fisiopatología , Inhibición Psicológica , Vías Nerviosas/fisiopatología , Trastornos Fóbicos/fisiopatología , Resiliencia Psicológica , Temperamento/fisiología , Adolescente , Adulto , Amígdala del Cerebelo/fisiopatología , Anticipación Psicológica/fisiología , Mapeo Encefálico , Estudios de Casos y Controles , Corteza Cerebral/fisiopatología , Expresión Facial , Miedo , Femenino , Neuroimagen Funcional , Giro del Cíngulo/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos Fóbicos/psicología , Corteza Prefrontal/fisiopatología , Factores de Riesgo , Adulto JovenRESUMEN
Hippocampal hyperactivity is a novel pharmacological target in the treatment of schizophrenia. We hypothesized that levetiracetam (LEV), a drug binding to the synaptic vesicle glycoprotein 2 A, normalizes hippocampal activity in persons with schizophrenia and can be measured using neuroimaging methods. Thirty healthy control participants and 30 patients with schizophrenia (28 treated with antipsychotic drugs), were randomly assigned to a double-blind, cross-over trial to receive a single administration of 500 mg oral LEV or placebo during two study visits. At each visit, we assessed hippocampal function using resting state fractional amplitude of low frequency fluctuations (fALFF), cerebral blood flow (CBF) with arterial spin labeling, and hippocampal blood-oxygen-level-dependent (BOLD) signal during a scene processing task. After placebo treatment, we found significant elevations in hippocampal fALFF in patients with schizophrenia, consistent with hippocampal hyperactivity. Additionally, hippocampal fALFF in patients with schizophrenia after LEV treatment did not significantly differ from healthy control participants receiving placebo, suggesting that LEV may normalize hippocampal hyperactivity. In contrast to our fALFF findings, we did not detect significant group differences or an effect of LEV treatment on hippocampal CBF. In the context of no significant group difference in BOLD signal, we found that hippocampal recruitment during scene processing is enhanced by LEV more significantly in schizophrenia. We conclude that pharmacological modulation of hippocampal hyperactivity in schizophrenia can be studied with some neuroimaging methods, but not others. Additional studies in different cohorts, employing alternate neuroimaging methods and study designs, are needed to establish levetiracetam as a treatment for schizophrenia.
Asunto(s)
Piracetam , Esquizofrenia , Humanos , Levetiracetam , Anticonvulsivantes/uso terapéutico , Piracetam/uso terapéutico , Piracetam/efectos adversos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/inducido químicamente , Método Doble Ciego , Hipocampo/diagnóstico por imagenRESUMEN
Hippocampal volume is smaller in schizophrenia, but it is unclear when in the illness the changes appear and whether specific regions (anterior, posterior) and subfields (CA1, CA2/3, dentate gyrus, subiculum) are affected. Here, we used a high-resolution T2-weighted sequence specialized for imaging hippocampal subfields to test the hypothesis that anterior CA1 volume is lower in early psychosis. We measured subfield volumes across hippocampal regions in a group of 90 individuals in the early stage of a non-affective psychotic disorder and 70 demographically similar healthy individuals. We observed smaller volume in the anterior CA1 and dentate gyrus subfields in the early psychosis group. Our findings support models that implicate anterior CA1 and dentate gyrus subfield deficits in the mechanism of psychosis.
Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Imagen por Resonancia Magnética/métodos , Hipocampo/diagnóstico por imagen , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagenRESUMEN
Recent cognitive, genetic, and histological studies have highlighted significant overlap between psychotic bipolar disorder and schizophrenia. Specifically, both bipolar disorder and schizophrenia are characterized by interneuron dysfunction within the hippocampus, an essential structure for relational memory. Relational memory impairments are a common feature of schizophrenia, but have yet to be investigated in psychotic bipolar disorder. Here, we tested the hypothesis that psychotic bipolar disorder is characterized by relational memory deficits. We used a transitive inference (TI) paradigm, previously employed to quantify relational memory deficits in schizophrenia, to assess relational memory performance in 17 patients with psychotic bipolar disorder and 22 demographically matched control participants. Functional magnetic resonance imaging was used to examine hippocampal activity during recognition memory in patients and controls. Hippocampal volumes were assessed by manual segmentation. In contrast to our hypothesis, we found similar TI performance, hippocampal volume, and hippocampal recruitment during recognition memory in both groups. Both psychotic bipolar disorder patients and controls exhibited a positive correlation between hippocampal volume and relational memory performance. These data indicate that relational memory impairments are not a shared feature of non-affective and affective psychosis.
RESUMEN
Reporting effect size index estimates with their confidence intervals (CIs) can be an excellent way to simultaneously communicate the strength and precision of the observed evidence. We recently proposed a robust effect size index (RESI) that is advantageous over common indices because it's widely applicable to different types of data. Here, we use statistical theory and simulations to develop and evaluate RESI estimators and confidence/credible intervals that rely on different covariance estimators. Our results show (1) counter to intuition, the randomness of covariates reduces coverage for Chi-squared and F CIs; (2) when the variance of the estimators is estimated, the non-central Chi-squared and F CIs using the parametric and robust RESI estimators fail to cover the true effect size at the nominal level. Using the robust estimator along with the proposed nonparametric bootstrap or Bayesian (credible) intervals provides valid inference for the RESI, even when model assumptions may be violated. This work forms a unified effect size reporting procedure, such that effect sizes with confidence/credible intervals can be easily reported in an analysis of variance (ANOVA) table format.
Asunto(s)
Teorema de Bayes , Psicometría , Análisis de VarianzaRESUMEN
Background: Hippocampal abnormalities are among the most consistent findings in schizophrenia. Numerous studies have reported deficits in hippocampal volume, function, and connectivity in the chronic stage of illness. While hippocampal volume and function deficits are also present in the early stage of illness, there is mixed evidence of both higher and lower functional connectivity. Here, we use graph theory to test the hypothesis that hippocampal network connectivity is broadly lowered in early psychosis and progressively worsens over 2 years. Methods: We examined longitudinal resting-state functional connectivity in 140 participants (68 individuals in the early stage of psychosis, 72 demographically similar healthy control individuals). We used an anatomically driven approach to quantify hippocampal network connectivity at 2 levels: 1) a core hippocampal-medial temporal lobe cortex (MTLC) network; and 2) an extended hippocampal-cortical network. Group and time effects were tested in a linear mixed effects model. Results: Early psychosis patients showed elevated functional connectivity in the core hippocampal-MTLC network, but contrary to our hypothesis, did not show alterations within the broader hippocampal-cortical network. Hippocampal-MTLC network hyperconnectivity normalized longitudinally and predicted improvement in positive symptoms but was not associated with increasing illness duration. Conclusions: These results show abnormally elevated functional connectivity in a core hippocampal-MTLC network in early psychosis, suggesting that selectively increased hippocampal signaling within a localized cortical circuit may be a marker of the early stage of psychosis. Hippocampal-MTLC hyperconnectivity could have prognostic and therapeutic implications.
RESUMEN
Williams syndrome is a neurodevelopmental disorder associated with significant non-social fears. Consistent with this elevated non-social fear, individuals with Williams syndrome have an abnormally elevated amygdala response when viewing threatening non-social stimuli. In typically-developing individuals, amygdala activity is inhibited through dense, reciprocal white matter connections with the prefrontal cortex. Neuroimaging studies suggest a functional uncoupling of normal prefrontal-amygdala inhibition in individuals with Williams syndrome, which might underlie both the extreme amygdala activity and non-social fears. This functional uncoupling might be caused by structural deficits in underlying white matter pathways; however, prefrontal-amygdala white matter deficits have yet to be explored in Williams syndrome. We used diffusion tensor imaging to investigate prefrontal-amygdala white matter integrity differences in individuals with Williams syndrome and typically-developing controls with high levels of non-social fear. White matter pathways between the amygdala and several prefrontal regions were isolated using probabilistic tractography. Within each pathway, we tested for between-group differences in three measures of white matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and parallel diffusivity (λ(1)). Individuals with Williams syndrome had lower FA, compared to controls, in several of the prefrontal-amygdala pathways investigated, indicating a reduction in white matter integrity. Lower FA in Williams syndrome was explained by significantly higher RD, with no differences in λ(1), suggestive of lower fiber density or axon myelination in prefrontal-amygdala pathways. These results suggest that deficits in the structural integrity of prefrontal-amygdala white matter pathways might underlie the increased amygdala activity and extreme non-social fears observed in Williams syndrome.
Asunto(s)
Amígdala del Cerebelo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Fibras Nerviosas Mielínicas/patología , Corteza Prefrontal/patología , Síndrome de Williams/patología , Adulto , Femenino , Humanos , Masculino , Vías Nerviosas/patología , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: Thalamocortical white matter connectivity is disrupted in psychosis and is hypothesized to play a role in its etiology and associated cognitive impairment. Attenuated cognitive symptoms often begin in adolescence, during a critical phase of white matter and cognitive development. However, little is known about the development of thalamocortical white matter connectivity and its association with cognition. METHODS: This study characterized effects of age, sex, psychosis symptomatology, and cognition in thalamocortical networks in a large sample of youths (N = 1144, ages 8-22 years, 46% male) from the Philadelphia Neurodevelopmental Cohort, which included 316 typically developing youths, 330 youths on the psychosis spectrum, and 498 youths with other psychopathology. Probabilistic tractography was used to quantify percent total connectivity between the thalamus and six cortical regions and assess microstructural properties (i.e., fractional anisotropy) of thalamocortical white matter tracts. RESULTS: Overall, percent total connectivity of the thalamus was weakly associated with age and was not associated with psychopathology or cognition. In contrast, fractional anisotropy of all thalamocortical tracts increased significantly with age, was generally higher in males than females, and was lowest in youths on the psychosis spectrum. Fractional anisotropy of tracts linking the thalamus to prefrontal and posterior parietal cortices was related to better cognitive function across subjects. CONCLUSIONS: By characterizing the pattern of typical development and alterations in those at risk for psychotic disorders, this study provides a foundation for further conceptualization of thalamocortical white matter microstructure as a marker of neurodevelopment supporting cognition and an important risk marker for psychosis.
Asunto(s)
Trastornos Psicóticos , Sustancia Blanca , Adolescente , Adulto , Anisotropía , Niño , Cognición , Femenino , Humanos , Masculino , Tálamo , Sustancia Blanca/patología , Adulto JovenRESUMEN
Neuroimaging studies have revealed hippocampal hyperactivity in schizophrenia. In the early stage of the illness, hyperactivity is present in the anterior hippocampus and is thought to spread to other regions as the illness progresses. However, there is limited evidence for changes in basal hippocampal function following the onset of psychosis. Resting state functional MRI signal amplitude may be a proxy measure for increased metabolism and disrupted oscillatory activity, both consequences of an excitation/inhibition imbalance underlying hippocampal hyperactivity. Here, we used fractional amplitude of low frequency fluctuations (fALFF) to test the hypothesis of progressive hippocampal hyperactivity in a two-year longitudinal case-control study. We found higher fALFF in the anterior and posterior hippocampus of individuals in the early stage of non-affective psychosis at study entry. Contrary to our hypothesis of progressive hippocampal dysfunction, we found evidence for normalization of fALFF over time in psychosis. Our findings support a model in which hippocampal fALFF is a marker of psychosis vulnerability or acute illness state rather than an enduring feature of the illness.
Asunto(s)
Trastornos Psicóticos , Encéfalo , Estudios de Casos y Controles , Estudios de Seguimiento , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Trastornos Psicóticos/diagnóstico por imagenRESUMEN
Temperament involves stable behavioral and emotional tendencies that differ between individuals, which can be first observed in infancy or early childhood and relate to behavior in many contexts and over many years.1 One of the most rigorously characterized temperament classifications relates to the tendency of individuals to avoid the unfamiliar and to withdraw from unfamiliar people, objects, and unexpected events. This temperament is referred to as behavioral inhibition or inhibited temperament (IT).2 IT is a moderately heritable trait1 that can be measured in multiple species.3 In humans, levels of IT can be quantified from the first year of life through direct behavioral observations or reports by caregivers or teachers. Similar approaches as well as self-report questionnaires on current and/or retrospective levels of IT1 can be used later in life.
Asunto(s)
Ansiedad , Temperamento , Ansiedad/psicología , Trastornos de Ansiedad , Encéfalo/fisiología , Preescolar , Humanos , Estudios Retrospectivos , Temperamento/fisiologíaRESUMEN
Neural habituation, the decrease in brain response to repeated stimuli, is a fundamental, highly conserved mechanism that acts as an essential filter for our complex sensory environment. Convergent evidence indicates neural habituation is disrupted in both early and chronic stages of schizophrenia, with deficits co-occurring in brain regions that show inhibitory dysfunction. As inhibitory deficits have been proposed to contribute to the onset and progression of illness, habituation may be an important treatment target. However, a crucial first step is clarifying whether habituation deficits progress with illness. In the present study, we measured neural habituation in 138 participants (70 early psychosis patients (<2 years of illness), 68 healthy controls), with 108 participants assessed longitudinally at both baseline and 2-year follow-up. At follow-up, all early psychosis patients met criteria for a schizophrenia spectrum disorder (i.e., schizophreniform disorder, schizophrenia, schizoaffective disorder). Habituation slopes (i.e., rate of fMRI signal change) to repeated images were computed for the anterior hippocampus, occipital cortex, and the fusiform face area. Habituation slopes were entered into a linear mixed model to test for effects of group and time by region. We found that early psychosis patients showed habituation deficits relative to healthy control participants across brain regions, and that these deficits were maintained, but did not worsen, over two years. These results suggest a stable period of habituation deficits in the early stage of schizophrenia.
Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Estudios de Seguimiento , Habituación Psicofisiológica , Humanos , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: Relational memory, the ability to bind information into complex memories, is moderately impaired in early psychosis and severely impaired in chronic schizophrenia, suggesting relational memory may worsen throughout the course of illness. METHODS: We examined relational memory in 66 early psychosis patients and 64 healthy control subjects, with 59 patients and 52 control subjects assessed longitudinally at baseline and 2-year follow-up. Relational memory was assessed with 2 complementary tasks, to test how individuals learn relationships between items (face-scene binding task) and make inferences about trained relationships (associative inference task). RESULTS: The early psychosis group showed impaired relational memory in both tasks relative to the healthy control group. The ability to learn relationships between items remained impaired in early psychosis patients, while the ability to make inferences about trained relationships improved, although never reaching the level of healthy control performance. Early psychosis patients who did not progress to schizophrenia at follow-up had better relational memory than patients who did. CONCLUSIONS: Relational memory impairments, some of which improve and are less severe in patients who do not progress to schizophrenia, are a target for intervention in early psychosis.
Asunto(s)
Disfunción Cognitiva/fisiopatología , Progresión de la Enfermedad , Aprendizaje/fisiología , Trastornos de la Memoria/fisiopatología , Trastornos Psicóticos/fisiopatología , Esquizofrenia/fisiopatología , Adolescente , Adulto , Disfunción Cognitiva/etiología , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Masculino , Trastornos de la Memoria/etiología , Trastornos Psicóticos/complicaciones , Esquizofrenia/complicaciones , Adulto JovenRESUMEN
Previous research indicates that the amygdala and hippocampus are sensitive to novelty; however, two types of novelty can be distinguished - stimuli that are ordinary, but novel in the current context, and stimuli that are unusual. Using functional magnetic resonance imaging, we examined blood oxygen dependent level (BOLD) response of the human amygdala and hippocampus to novel, commonly seen objects versus novel unusual objects. When presented with the novel common stimuli, the BOLD signal increased significantly in both the amygdala and hippocampus. However, for the novel unusual stimuli, only the amygdala showed an increased response compared to the novel common stimuli. These findings suggest that the amygdala is distinctly responsive to novel unusual stimuli, making a unique contribution to the novelty detection circuit.
Asunto(s)
Amígdala del Cerebelo/fisiología , Reconocimiento Visual de Modelos/fisiología , Reconocimiento en Psicología/fisiología , Amígdala del Cerebelo/irrigación sanguínea , Encéfalo/fisiología , Mapeo Encefálico , Femenino , Hipocampo/irrigación sanguínea , Hipocampo/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Estimulación Luminosa , Adulto JovenRESUMEN
BACKGROUND: The default network is a set of brain regions that exhibit a reduction in BOLD response during attention-demanding cognitive tasks, and distinctive patterns of functional connectivity that typically include anti-correlations with a fronto-parietal network involved in attention, working memory, and executive control. The function of the default network regions has been attributed to introspection, self-awareness, and theory of mind judgments, and some of its regions are involved in episodic memory processes. RESULTS: Using the method of psycho-physiological interactions, we studied the functional connectivity of several regions in a fronto-parietal network involved in a paired image discrimination task involving transitive inference. Some image pairs were derived from an implicit underlying sequence A>B>C>D>E, and some were independent (F>G, H>J, etc). Functional connectivity between the fronto-parietal regions and the default network regions depended on the presence of the underlying sequence relating the images. When subjects viewed learned and novel pairs from the sequence, connectivity between these two networks was higher than when subjects viewed learned and novel pairs from the independent sets. CONCLUSIONS: These results suggest that default network regions were involved in maintaining the internal model that subserved discrimination of image pairs derived from the implicit sequence, and contributed to introspective access of an internal sequence model built during training. The default network may not be a unified entity with a specific function, but rather may interact with other functional networks in task-dependent ways.
Asunto(s)
Aprendizaje por Asociación/fisiología , Cognición/fisiología , Función Ejecutiva/fisiología , Lóbulo Frontal/fisiología , Red Nerviosa/fisiología , Lóbulo Parietal/fisiología , Mapeo Encefálico , Lóbulo Frontal/anatomía & histología , Humanos , Procesamiento de Imagen Asistido por Computador , Juicio/fisiología , Lógica , Imagen por Resonancia Magnética , Procesos Mentales/fisiología , Red Nerviosa/anatomía & histología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Lóbulo Parietal/anatomía & histología , Psicofisiología , Análisis y Desempeño de TareasRESUMEN
Relational memory, or the ability to form contextual associations among items encountered closely in time, is impaired in schizophrenia. The ability to bind items into a relational memory is dependent on the hippocampus, a region that is abnormal in schizophrenia. However, the hippocampus is also involved in exploratory behavior, leaving open the question whether relational memory deficits in schizophrenia are due to failure of relational binding or diminished visual exploration of individual items during encoding. We studied visual exploration patterns during the encoding of face-scene pairs in 66 healthy control subjects and 69 early psychosis patients, to test the hypothesis that differences in visual exploration during the encoding phase can explain task accuracy differences between the two groups. Psychosis patients had lower explicit test accuracy and were less likely to transition from mouth to eyes during encoding. The visual exploration pattern differences between groups did not mediate the relationship between group and explicit test accuracy. We conclude that early psychosis patients have an abnormal pattern of binding items together during encoding that warrants further research.
Asunto(s)
Movimientos Oculares/fisiología , Memoria/fisiología , Estimulación Luminosa/métodos , Trastornos Psicóticos/psicología , Percepción Visual/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Trastornos de la Memoria/diagnóstico , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/psicología , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/fisiopatología , Adulto JovenRESUMEN
BACKGROUND: Memory is significantly impaired in schizophrenia. However, memory measures are often complex and confounded by additional impairments such as motivation and task comprehension, which can affect behavioral performance and obscure neural function during memory tasks. Neural signatures of memory encoding that are robust to potential confounds may shed additional light on neural deficits contributing to memory impairment in schizophrenia. METHODS: Here, we investigate a potential neural signature of memory-habituation-and its relationship with healthy and impaired memory function. To limit potential confounds, we used a passive depth of encoding memory task designed to elicit neural responses associated with memory encoding while limiting other cognitive demands. To determine whether habituation during encoding was predictive of intact memory processing, we first compared neural habituation over repeated encoding exposures with subsequent explicit memory in healthy individuals. We then tested whether a similar relationship existed in patients with schizophrenia. RESULTS: Explicit memory performance was impaired in patients with schizophrenia relative to healthy control subjects. In healthy participants, more habituation over repeated exposures during encoding was associated with greater repetition-related increases in accuracy during testing. However, in patients with schizophrenia, better performance was associated with less habituation, or a more sustained neural response during encoding. CONCLUSIONS: These results suggest that sustained neural activity is required for normal repetition-related improvements in memory performance in schizophrenia, in line with a neural inefficiency model. Habituation may serve as a valuable index of neural processes that underlie behavioral memory performance.