Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(8): 1307-1318, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38416036

RESUMEN

Plitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2. In resiquimod (a ligand of TLR7/8)-stimulated THP1 human monocytes, plitidepsin-mediated reductions of IL-6 mRNA and IL-6 levels were also noticed. Additionally, although resiquimod-induced binding to DNA of NF-κB family members was unaffected by plitidepsin, a decrease in the regulated transcription by NF-κB (a key transcription factor involved in the inflammatory cascade) was observed. Furthermore, the phosphorylation of p65 that is required for full transcriptional NF-κB activity was significantly reduced by plitidepsin. Moreover, decreases of IL-6 levels and other proinflammatory cytokines were also seen in either SARS-CoV-2 or H1N1 influenza virus-infected mice, which were treated at low enough plitidepsin doses to not induce antiviral effects. In summary, plitidepsin is a promising therapeutic agent for the treatment of viral infections, not only because of its host-targeted antiviral effect, but also for its immunomodulatory effect, both of which were evidenced in vitro and in vivo by the decrease of proinflammatory cytokines.


Asunto(s)
Depsipéptidos , Subtipo H1N1 del Virus de la Influenza A , FN-kappa B , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Interleucina-6/farmacología , Antivirales/farmacología , Factores Inmunológicos/farmacología , Citocinas/metabolismo , SARS-CoV-2/metabolismo
2.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806460

RESUMEN

A clinically relevant subset of patients with soft tissue sarcoma presents with either locally advanced or upfront metastatic disease, or will develop distant metastases over time, despite successful treatment of their primary tumour. The currently available systemic agents to treat such advanced cases only provide modest disease control and are not active in all histological subtypes. Thus, there is an unmet need for novel and more efficacious agents to improve the outcome of this rare disease. In the current preclinical in vivo study, we evaluated plocabulin, a novel tubulin inhibitor, in five distinct histological subtypes of soft tissue sarcoma: dedifferentiated liposarcoma, leiomyosarcoma, undifferentiated sarcoma, intimal sarcoma and CIC-rearranged sarcoma. The efficacy was tested in seven patient-derived xenograft models, which were generated by the engraftment of tumour fragments from patients directly into nude mice. The treatment lasted 22 days, and the efficacy of the drug was assessed and compared to the doxorubicin and vehicle groups by volumetric analysis, histopathology and immunohistochemistry. We observed tumour volume control in all the tested histological subtypes. Additionally, in three sarcoma subtypes, extensive central necrosis, associated with significant tumour regression, was seen. This histological response is explained by the drug's vascular-disruptive properties, reflected by a decreased total vascular area in the xenografts. Our results demonstrate the in vivo efficacy of plocabulin in the preclinical models of soft tissue sarcoma and corroborate the findings of our previous study, which demonstrated similar vascular-disruptive effects in gastrointestinal stromal tumours-another subtype of soft tissue sarcoma. Our data provide a convincing rationale for further clinical exploration of plocabulin in soft tissue sarcomas.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Animales , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Policétidos , Pironas , Sarcoma/tratamiento farmacológico , Sarcoma/patología , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Neoplasias de los Tejidos Blandos/patología , Moduladores de Tubulina/uso terapéutico
3.
BMC Cancer ; 18(1): 164, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29415678

RESUMEN

BACKGROUND: Vascular supply of tumors is one of the main targets for cancer therapy. Here, we investigated if plocabulin (PM060184), a novel marine-derived microtubule-binding agent, presents antiangiogenic and vascular-disrupting activities. METHODS: The effects of plocabulin on microtubule network and dynamics were studied on HUVEC endothelial cells. We have also studied its effects on capillary tube structures formation or destabilization in three-dimensional collagen matrices. In vivo experiments were performed on different tumor cell lines. RESULTS: In vitro studies show that, at picomolar concentrations, plocabulin inhibits microtubule dynamics in endothelial cells. This subsequently disturbs the microtubule network inducing changes in endothelial cell morphology and causing the collapse of angiogenic vessels, or the suppression of the angiogenic process by inhibiting the migration and invasion abilities of endothelial cells. This rapid collapse of the endothelial tubular network in vitro occurs in a concentration-dependent manner and is observed at concentrations lower than that affecting cell survival. The in vitro findings were confirmed in tumor xenografts where plocabulin treatment induced a large reduction in vascular volume and induction of extensive necrosis in tumors, consistent with antivascular effects. CONCLUSIONS: Altogether, these data suggest that an antivascular mechanism is contributing to the antitumor activities of plocabulin.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Policétidos/farmacología , Pironas/farmacología , Tubulina (Proteína)/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Ratones Desnudos , Microtúbulos/metabolismo , Neoplasias/irrigación sanguínea , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/prevención & control , Policétidos/metabolismo , Unión Proteica , Pironas/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nanomedicine ; 14(2): 257-267, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29127040

RESUMEN

Glutathione degradable polyurethane-polyurea nanoparticles (PUUa NP) with a disulfide-rich multiwalled structure and a cyclic RGD peptide as a targeting moiety were synthesized, incorporating a very lipophilic chemotherapeutic drug named Plitidepsin. In vitro studies indicated that encapsulated drug maintained and even improved its cytotoxic activity while in vivo toxicity studies revealed that the maximum tolerated dose (MTD) of Plitidepsin could be increased three-fold after encapsulation. We also found that pharmacokinetic parameters such as maximum concentration (Cmax), area under the curve (AUC) and plasma half-life were significantly improved for Plitidepsin loaded in PUUa NP. Moreover, biodistribution assays in mice showed that RGD-decorated PUUa NP accumulate less in spleen and liver than non-targeted conjugates, suggesting that RGD-decorated nanoparticles avoid sequestration by macrophages from the reticuloendothelial system. Overall, our results indicate that polyurethane-polyurea nanoparticles represent a very valuable nanoplatform for the delivery of lipophilic drugs by improving their toxicological, pharmacokinetic and whole-body biodistribution profiles.


Asunto(s)
Antineoplásicos/farmacocinética , Depsipéptidos/farmacocinética , Sistemas de Liberación de Medicamentos , Integrina alfaVbeta3/antagonistas & inhibidores , Nanopartículas/administración & dosificación , Polímeros/química , Poliuretanos/química , Animales , Antineoplásicos/administración & dosificación , Depsipéptidos/administración & dosificación , Portadores de Fármacos , Femenino , Ratones , Nanopartículas/química , Péptidos Cíclicos , Distribución Tisular
5.
Haematologica ; 102(1): 168-175, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27540138

RESUMEN

Despite new advances in multiple myeloma treatment and the consequent improvement in overall survival, most patients relapse or become refractory to treatment. This suggests that new molecules and combinations that may further inhibit important survival pathways for these tumor cells are needed. In this context, zalypsis is a novel compound, derived from marine organisms, with a powerful preclinical anti-myeloma effect based on the sensitivity of malignant plasma cells to DNA-damage induction; and it has already been tested in a phase I/II clinical trial in multiple myeloma. We hypothesized that the addition of this compound to the combination of bortezomib plus dexamethasone may improve efficacy with acceptable toxicity. The triple combination demonstrated strong synergy and higher efficacy compared with double combinations; not only in vitro, but also ex vivo and, especially, in in vivo experiments. The triple combination triggers cell death, mainly through a synergistic induction of DNA damage and a decrease in the nuclear localization of nuclear factor kappa B. Our findings support the clinical evaluation of this combination for relapsed and refractory myeloma patients.


Asunto(s)
Bortezomib/farmacología , Daño del ADN/efectos de los fármacos , Dexametasona/farmacología , Mieloma Múltiple/genética , Tetrahidroisoquinolinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Caspasas/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , FN-kappa B/metabolismo , Transporte de Proteínas/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
BMC Cancer ; 14: 281, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24758355

RESUMEN

BACKGROUND: Zalypsis(®) is a marine compound in phase II clinical trials for multiple myeloma, cervical and endometrial cancer, and Ewing's sarcoma. However, the determinants of the response to Zalypsis are not well known. The identification of biomarkers for Zalypsis activity would also contribute to broaden the spectrum of tumors by selecting those patients more likely to respond to this therapy. METHODS: Using in vitro drug sensitivity data coupled with a set of molecular data from a panel of sarcoma cell lines, we developed molecular signatures that predict sensitivity to Zalypsis. We verified these results in culture and in vivo xenograft studies. RESULTS: Zalypsis resistance was dependent on the expression levels of PDGFRα or constitutive phosphorylation of c-Kit, indicating that the activation of tyrosine kinase receptors (TKRs) may determine resistance to Zalypsis. To validate our observation, we measured the levels of total and active (phosphorylated) forms of the RTKs PDGFRα/ß, c-Kit, and EGFR in a new panel of diverse solid tumor cell lines and found that the IC50 to the drug correlated with RTK activation in this new panel. We further tested our predictions about Zalypsis determinants for response in vivo in xenograft models. All cells lines expressing low levels of RTK signaling were sensitive to Zalypsis in vivo, whereas all cell lines except two with high levels of RTK signaling were resistant to the drug. CONCLUSIONS: RTK activation might provide important signals to overcome the cytotoxicity of Zalypsis and should be taken into consideration in current and future clinical trials.


Asunto(s)
Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/biosíntesis , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/biosíntesis , Sarcoma/tratamiento farmacológico , Sarcoma/genética , Biomarcadores Farmacológicos , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/biosíntesis , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Proto-Oncogénicas c-kit/biosíntesis , ARN Mensajero/biosíntesis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Sarcoma/patología , Tetrahidroisoquinolinas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Pharm Res ; 31(4): 983-91, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24287622

RESUMEN

PURPOSE: Plitidepsin is an antineoplasic currently in clinical evaluation in a phase III trial in multiple myeloma (ADMYRE). Presently, the hydrophobic drug plitidepsin is formulated using Cremophor®, an adjuvant associated with unwanted hypersensitivity reactions. In search of alternatives, we developed and tested two nanoparticle-based formulations of plitidepsin, aiming to modify/improve drug biodistribution and efficacy. METHODS: Using nanoprecipitation, plitidepsin was loaded in polymer nanoparticles made of amphiphilic block copolymers (i.e. PEG-b-PBLG or PTMC-b-PGA). The pharmacokinetics, biodistribution and therapeutic efficacy was assessed using a xenograft renal cancer mouse model (MRI-H-121 xenograft) upon administration of the different plitidepsin formulations at maximum tolerated multiple doses (0.20 and 0.25 mg/kg for Cremophor® and copolymer formulations, respectively). RESULTS: High plitidepsin loading efficiencies were obtained for both copolymer formulations. Considering pharmacokinetics, PEG-b-PBLG formulation showed lower plasma clearance, associated with higher AUC and Cmax than Cremophor® or PTMC-b-PGA formulations. Additionally, the PEG-b-PBLG formulation presented lower liver and kidney accumulation compared with the other two formulations, associated with an equivalent tumor distribution. Regarding the anticancer activity, all formulations elicited similar efficacy profiles, as compared to the Cremophor® formulation, successfully reducing tumor growth rate. CONCLUSIONS: Although the nanoparticle formulations present equivalent anticancer activity, compared to the Cremophor® formulation, they show improved biodistribution profiles, presenting novel tools for future plitidepsin-based therapies.


Asunto(s)
Depsipéptidos/farmacocinética , Portadores de Fármacos/farmacocinética , Neoplasias Renales/metabolismo , Nanopartículas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Depsipéptidos/administración & dosificación , Portadores de Fármacos/administración & dosificación , Femenino , Neoplasias Renales/tratamiento farmacológico , Ratones , Ratones Desnudos , Nanopartículas/administración & dosificación , Péptidos Cíclicos , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología , Resultado del Tratamiento
8.
J Med Chem ; 67(4): 2619-2630, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38294341

RESUMEN

Targeting microtubules is the most effective wide-spectrum pharmacological strategy in antitumoral chemotherapy, and current research focuses on reducing main drawbacks: neurotoxicity and resistance. PM534 is a novel synthetic compound derived from the Structure-Activity-Relationship study on the natural molecule PM742, isolated from the sponge of the order Lithistida, family Theonellidae, genus Discodermia (du Bocage 1869). PM534 targets the entire colchicine binding domain of tubulin, covering four of the five centers of the pharmacophore model. Its nanomolar affinity and high retention time modulate a strikingly high antitumor activity that efficiently overrides two resistance mechanisms in cells (detoxification pumps and tubulin ßIII isotype overexpression). Furthermore, PM534 induces significant inhibition of tumor growth in mouse xenograft models of human non-small cell lung cancer. Our results present PM534, a highly effective new compound in the preclinical evaluation that is currently in its first human Phase I clinical trial.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Microtúbulos , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico , Moduladores de Tubulina/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular
9.
Mar Drugs ; 11(5): 1677-92, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23697951

RESUMEN

Plitidepsin is an antitumor drug of marine origin currently in Phase III clinical trials in multiple myeloma. In cultured cells, plitidepsin induces cell cycle arrest or an acute apoptotic process in which sustained activation of c-Jun N-terminal kinase (JNK) plays a crucial role. With a view to optimizing clinical use of plitidepsin, we have therefore evaluated the possibility of using JNK activation as an in vivo biomarker of response. In this study, we show that administration of a single plitidepsin dose to mice xenografted with human cancer cells does indeed lead to increased phosphorylation of JNK in tumors at 4 to 12 h. By contrast, no changes were found in other in vitro plitidepsin targets such as the levels of phosphorylated-ERK, -p38MAPK or the protein p27KIP1. Interestingly, plitidepsin also increased JNK phosphorylation in spleens from xenografted mice showing similar kinetics to those seen in tumors, thereby suggesting that normal tissues might be useful for predicting drug activity. Furthermore, plitidepsin administration to rats at plasma concentrations comparable to those achievable in patients also increased JNK phosphorylation in peripheral mononuclear blood cells. These findings suggest that changes in JNK activity provide a reliable biomarker for plitidepsin activity and this could be useful for designing clinical trials and maximizing the efficacy of plitidepsin.


Asunto(s)
Antineoplásicos/farmacología , Depsipéptidos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Leucemia/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Biomarcadores/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Células K562 , Leucemia/patología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Desnudos , Péptidos Cíclicos , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Bazo/efectos de los fármacos , Bazo/metabolismo , Factores de Tiempo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Biomed Pharmacother ; 161: 114548, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36940615

RESUMEN

Immune cells have an important role in the tumor-microenvironment. Macrophages may tune the immune response toward inflammatory or tolerance pathways. Tumor-associated macrophages (TAM) have a string of immunosuppressive functions and they are considered a therapeutic target in cancer. This study aimed to analyze the effects of trabectedin, an antitumor agent, on the tumor-microenvironment through the characterization of the electrophysiological and molecular phenotype of macrophages. Experiments were performed using the whole-cell configuration of the patch-clamp technique in resident peritoneal mouse macrophages. Trabectedin does not directly interact with KV1.5 and KV1.3 channels, but their treatment (16 h) with sub-cytotoxic concentrations of trabectedin increased their KV current due to an upregulation of KV1.3 channels. In vitro generated TAM (TAMiv) exhibited an M2-like phenotype. TAMiv generated a small KV current and express high levels of M2 markers. K+ current from TAMs isolated from tumors generated in mice is a mixture of KV and KCa, and in TAM isolated from tumors generated in trabectedin-treated mice, the current is mostly driven by KCa. We conclude that the antitumor capacity of trabectedin is not only due to its effects on tumor cells, but also to the modulation of the tumor microenvironment, due, at least in part, to the modulation of the expression of different macrophage ion channels.


Asunto(s)
Macrófagos , Microambiente Tumoral , Ratones , Animales , Trabectedina/farmacología , Macrófagos/metabolismo , Activación de Macrófagos , Fenómenos Electrofisiológicos
11.
PLoS One ; 18(3): e0283783, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36996147

RESUMEN

AIMS: Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods to quantify total lurbinectedin, its plasma protein binding to derive the unbound fraction and its main metabolites 1',3'-dihydroxy-lurbinectedin (M4) and N-desmethyl-lurbinectedin (M6) in human plasma, were developed and validated. MATERIALS & METHODS: For lurbinectedin, sample extraction was performed using supported liquid extraction. For metabolites, liquid-liquid extraction with stable isotope-labeled analogue internal standards was used. Plasma protein binding was evaluated using rapid equilibrium dialysis. In vitro investigations at different plasma protein concentrations were carried out to estimate dissociation rate constants to albumin and alpha-1-acid glycoprotein (AAG). RESULTS: Calibration curves displayed good linearity over 0.1 to 50 ng/mL for lurbinectedin and 0.5 to 20 ng/mL for the metabolites. Methods were validated in accordance with established guidance. The inter-day precision and accuracy ranged from 5.1% to 10.7%, and from -5% to 6% (lurbinectedin in plasma); from 3.1% to 6.6%, and from 4% to 6% (lurbinectedin in plasma:PBS); from 4.5% to 12.9%, and from 4% to 9% (M4); and from 7.5% to 10.5%, and from 6% to 12% (M6). All methods displayed good linearity (r2 >0.99). Recovery was evaluated for lurbinectedin in plasma:PBS (66.4% to 86.6%), M4 (7.82% to 13.4%) and M6 (22.2% to 34.3%). The method for lurbinectedin in plasma has been applied in most clinical studies, while the plasma:PBS and metabolites methods were used to evaluate the impact of special conditions on lurbinectedin PK. Lurbinectedin plasma protein binding was 99.6% and highly affected by AAG concentration. CONCLUSIONS: These UPLC-MS/MS methods enable the rapid and sensitive quantification of lurbinectedin and its main metabolites in clinical samples.


Asunto(s)
Carbolinas , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados
12.
Antiviral Res ; 200: 105270, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35231500

RESUMEN

The pandemic caused by the new coronavirus SARS-CoV-2 has made evident the need for broad-spectrum, efficient antiviral treatments to combat emerging and re-emerging viruses. Plitidepsin is an antitumor agent of marine origin that has also shown a potent pre-clinical efficacy against SARS-CoV-2. Plitidepsin targets the host protein eEF1A (eukaryotic translation elongation factor 1 alpha) and affects viral infection at an early, post-entry step. Because electron microscopy is a valuable tool to study virus-cell interactions and the mechanism of action of antiviral drugs, in this work we have used transmission electron microscopy (TEM) to evaluate the effects of plitidepsin in SARS-CoV-2 infection in cultured Vero E6 cells 24 and 48h post-infection. In the absence of plitidepsin, TEM morphological analysis showed double-membrane vesicles (DMVs), organelles that support coronavirus genome replication, single-membrane vesicles with viral particles, large vacuoles with groups of viruses and numerous extracellular virions attached to the plasma membrane. When treated with plitidepsin, no viral structures were found in SARS-CoV-2-infected Vero E6 cells. Immunogold detection of SARS-CoV-2 nucleocapsid (N) protein and double-stranded RNA (dsRNA) provided clear signals in cells infected in the absence of plitidepsin, but complete absence in cells infected and treated with plitidepsin. The present study shows that plitidepsin blocks the biogenesis of viral replication organelles and the morphogenesis of virus progeny. Electron microscopy morphological analysis coupled to immunogold labeling of SARS-CoV-2 products offers a unique approach to understand how antivirals such as plitidepsin work.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Depsipéptidos , Animales , Antivirales/uso terapéutico , Chlorocebus aethiops , Depsipéptidos/farmacología , Péptidos Cíclicos , SARS-CoV-2 , Células Vero , Replicación Viral
13.
Life Sci Alliance ; 5(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35012962

RESUMEN

Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Depsipéptidos/uso terapéutico , Hospitalización/estadística & datos numéricos , Péptidos Cíclicos/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Adulto , Anciano , COVID-19/virología , Línea Celular Tumoral , Depsipéptidos/efectos adversos , Depsipéptidos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Estimación de Kaplan-Meier , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Neutropenia/inducido químicamente , Péptidos Cíclicos/efectos adversos , Péptidos Cíclicos/farmacología , SARS-CoV-2/fisiología , Resultado del Tratamiento , Carga Viral/efectos de los fármacos
14.
Blood ; 113(16): 3781-91, 2009 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-19020308

RESUMEN

Multiple myeloma (MM) remains incurable, and new drugs with novel mechanisms of action are still needed. In this report, we have analyzed the action of Zalypsis, an alkaloid analogous to certain natural marine compounds, in MM. Zalypsis turned out to be the most potent antimyeloma agent we have tested so far, with IC(50) values from picomolar to low nanomolar ranges. It also showed remarkable ex vivo potency in plasma cells from patients and in MM cells in vivo xenografted in mice. Besides the induction of apoptosis and cell cycle arrest, Zalypsis provoked DNA double-strand breaks (DSBs), evidenced by an increase in phospho-histone-H2AX and phospho-CHK2, followed by a striking overexpression of p53 in p53 wild-type cell lines. In addition, in those cell lines in which p53 was mutated, Zalypsis also provoked DSBs and induced cell death, although higher concentrations were required. Immunohistochemical studies in tumors also demonstrated histone-H2AX phosphorylation and p53 overexpression. Gene expression profile studies were concordant with these results, revealing an important deregulation of genes involved in DNA damage response. The potent in vitro and in vivo antimyeloma activity of Zalypsis uncovers the high sensitivity of tumor plasma cells to DSBs and strongly supports the use of this compound in MM patients.


Asunto(s)
Antineoplásicos/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Tetrahidroisoquinolinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Antineoplásicos/uso terapéutico , Muerte Celular , Quinasa de Punto de Control 2 , Relación Dosis-Respuesta a Droga , Histonas/genética , Histonas/metabolismo , Humanos , Ratones , Ratones SCID , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mutación , Fosforilación/efectos de los fármacos , Células Plasmáticas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Tetrahidroisoquinolinas/uso terapéutico , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética
15.
Haematologica ; 96(5): 687-95, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21330323

RESUMEN

BACKGROUND: Although the majority of patients with acute myeloid leukemia initially respond to conventional chemotherapy, relapse is still the leading cause of death, probably because of the presence of leukemic stem cells that are insensitive to current therapies. We investigated the antileukemic activity and mechanism of action of zalypsis, a novel alkaloid of marine origin. DESIGN AND METHODS: The activity of zalypsis was studied in four acute myeloid leukemia cell lines and in freshly isolated blasts taken from patients with acute myeloid leukemia before they started therapy. Zalypsis-induced apoptosis of both malignant and normal cells was measured using flow cytometry techniques. Gene expression profiling and western blot studies were performed to assess the mechanism of action of the alkaloid. RESULTS: Zalypsis showed a very potent antileukemic activity in all the cell lines tested and potentiated the effect of conventional antileukemic drugs such as cytarabine, fludarabine and daunorubicin. Interestingly, zalypsis showed remarkable ex vivo potency, including activity against the most immature blast cells (CD34(+) CD38(-) Lin(-)) which include leukemic stem cells. Zalypsis-induced apoptosis was the result of an important deregulation of genes involved in the recognition of double-strand DNA breaks, such as Fanconi anemia genes and BRCA1, but also genes implicated in the repair of double-strand DNA breaks, such as RAD51 and RAD54. These gene findings were confirmed by an increase in several proteins involved in the pathway (pCHK1, pCHK2 and pH2AX). CONCLUSIONS: The potent and selective antileukemic effect of zalypsis on DNA damage response mechanisms observed in acute myeloid leukemia cell lines and in patients' samples provides the rationale for the investigation of this compound in clinical trials.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN , Células Madre/efectos de los fármacos , Tetrahidroisoquinolinas/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Western Blotting , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/metabolismo , Células Madre/patología , Células Tumorales Cultivadas
16.
bioRxiv ; 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33501437

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths worldwide and massive societal and economic burden. Recently, a new variant of SARS-CoV-2, known as B.1.1.7, was first detected in the United Kingdom and is spreading in several other countries, heightening public health concern and raising questions as to the resulting effectiveness of vaccines and therapeutic interventions. We and others previously identified host-directed therapies with antiviral efficacy against SARS-CoV-2 infection. Less prone to the development of therapy resistance, host-directed drugs represent promising therapeutic options to combat emerging viral variants as host genes possess a lower propensity to mutate compared to viral genes. Here, in the first study of the full-length B.1.1.7 variant virus , we find two host-directed drugs, plitidepsin (aplidin; inhibits translation elongation factor eEF1A) and ralimetinib (inhibits p38 MAP kinase cascade), as well as remdesivir, to possess similar antiviral activity against both the early-lineage SARS-CoV-2 and the B.1.1.7 variant, evaluated in both human gastrointestinal and lung epithelial cell lines. We find that plitidepsin is over an order of magnitude more potent than remdesivir against both viruses. These results highlight the importance of continued development of host-directed therapeutics to combat current and future coronavirus variant outbreaks.

17.
Science ; 371(6532): 926-931, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33495306

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins interact with the eukaryotic translation machinery, and inhibitors of translation have potent antiviral effects. We found that the drug plitidepsin (aplidin), which has limited clinical approval, possesses antiviral activity (90% inhibitory concentration = 0.88 nM) that is more potent than remdesivir against SARS-CoV-2 in vitro by a factor of 27.5, with limited toxicity in cell culture. Through the use of a drug-resistant mutant, we show that the antiviral activity of plitidepsin against SARS-CoV-2 is mediated through inhibition of the known target eEF1A (eukaryotic translation elongation factor 1A). We demonstrate the in vivo efficacy of plitidepsin treatment in two mouse models of SARS-CoV-2 infection with a reduction of viral replication in the lungs by two orders of magnitude using prophylactic treatment. Our results indicate that plitidepsin is a promising therapeutic candidate for COVID-19.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Depsipéptidos/farmacología , Factor 1 de Elongación Peptídica/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Animales , Antivirales/uso terapéutico , COVID-19/prevención & control , COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/biosíntesis , Proteínas de la Nucleocápside de Coronavirus/genética , Depsipéptidos/administración & dosificación , Depsipéptidos/uso terapéutico , Evaluación Preclínica de Medicamentos , Femenino , Células HEK293 , Humanos , Pulmón/virología , Ratones Endogámicos C57BL , Mutación , Péptidos Cíclicos , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , ARN Viral/biosíntesis , ARN Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos
18.
Cancers (Basel) ; 13(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066159

RESUMEN

BACKGROUND: Malignant pleural mesothelioma (MPM) is a highly aggressive cancer generally diagnosed at an advanced stage and characterized by a poor prognosis. The absence of alterations in druggable kinases, together with an immune-suppressive tumor microenvironment, limits the use of molecular targeted therapies, making the treatment of MPM particularly challenging. Here we investigated the in vitro susceptibility of MPM to lurbinectedin (PM01183), a marine-derived drug that recently received accelerated approval by the FDA for the treatment of patients with metastatic small cell lung cancer with disease progression on or after platinum-based chemotherapy. METHODS: A panel of primary MPM cultures, resembling the three major MPM histological subtypes (epithelioid, sarcomatoid, and biphasic), was characterized in terms of BAP1 status and histological markers. Subsequently, we explored the effects of lurbinectedin at nanomolar concentration on cell cycle, cell viability, DNA damage, genotoxic stress response, and proliferation. RESULTS: Stabilized MPM cultures exhibited high sensitivity to lurbinectedin independently from the BAP1 mutational status and histological classification. Specifically, we observed that lurbinectedin rapidly promoted a cell cycle arrest in the S-phase and the activation of the DNA damage response, two conditions that invariably resulted in an irreversible DNA fragmentation, together with strong apoptotic cell death. Moreover, the analysis of long-term treatment indicated that lurbinectedin severely impacts MPM transforming abilities in vitro. CONCLUSION: Overall, our data provide evidence that lurbinectedin exerts a potent antitumoral activity on primary MPM cells, independently from both the histological subtype and BAP1 alteration, suggesting its potential activity in the treatment of MPM patients.

19.
medRxiv ; 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34075384

RESUMEN

Plitidepsin is a marine-derived cyclic-peptide that inhibits SARS-CoV-2 replication at low nanomolar concentrations by the targeting of host protein eEF1A (eukaryotic translation-elongation-factor-1A). We evaluated a model of intervention with plitidepsin in hospitalized COVID-19 adult patients where three doses were assessed (1.5, 2 and 2.5 mg/day for 3 days, as a 90-minute intravenous infusion) in 45 patients (15 per dose-cohort). Treatment was well tolerated, with only two Grade 3 treatment-related adverse events observed (hypersensitivity and diarrhea). The discharge rates by Days 8 and 15 were 56.8% and 81.8%, respectively, with data sustaining dose-effect. A mean 4.2 log10 viral load reduction was attained by Day 15. Improvement in inflammation markers was also noted in a seemingly dose-dependent manner. These results suggest that plitidepsin impacts the outcome of patients with COVID-19. ONE-SENTENCE SUMMARY: Plitidepsin, an inhibitor of SARS-Cov-2 in vitro , is safe and positively influences the outcome of patients hospitalized with COVID-19.

20.
Transl Oncol ; 13(11): 100832, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32711367

RESUMEN

The majority of patients with gastrointestinal stromal tumors (GIST) eventually become resistant with time due to secondary mutations in the driver receptor tyrosine kinase. Novel treatments that do not target these receptors may therefore be preferable. For the first time, we evaluated a tubulin inhibitor, plocabulin, in patient-derived xenograft (PDX) models of GIST, a disease generally considered to be resistant to cytotoxic agents. Three PDX models of GIST with different KIT genotype were generated by implanting tumor fragments from patients directly into nude mice. We then used these well characterized models with distinct sensitivity to imatinib to evaluate the efficacy of the novel tubulin inhibitor. The efficacy of the drug was assessed by volumetric analysis of the tumors, histopathology, immunohistochemistry and Western blotting. Plocabulin treatment led to extensive necrosis in all three models and significant tumor shrinkage in two models. This histological response can be explained by the drug's vascular-disruptive properties, which resulted in a shutdown of tumor vasculature, reflected by a decreased total vascular area in the tumor tissue. Our results demonstrated the in vivo efficacy of the novel tubulin inhibitor plocabulin in PDX models of GIST and challenge the established view that GIST are resistant to cytotoxic agents in general and to tubulin inhibitors in particular. Our findings provide a convincing rationale for early clinical exploration of plocabulin in GIST and warrant further exploration of this class of drugs in the management of this common sarcoma subtype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA