Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Theor Appl Genet ; 133(4): 1243-1264, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31965232

RESUMEN

KEY MESSAGE: Diagnostic markers for Rrs1Rh4 have been identified by testing for associations between SNPs within the Rrs1 interval in 150 barley genotypes and their resistance to Rhynchosporium commune isolates recognised by lines containing Rrs1. Rhynchosporium or barley scald, caused by the destructive fungal pathogen Rhynchosporium commune, is one of the most economically important diseases of barley in the world. Barley landraces from Syria and Jordan demonstrated high resistance to rhynchosporium in the field. Genotyping of a wide range of barley cultivars and landraces, including known sources of different Rrs1 genes/alleles, across the Rrs1 interval, followed by association analysis of this genotypic data with resistance phenotypes to R. commune isolates recognised by Rrs1, allowed the identification of diagnostic markers for Rrs1Rh4. These markers are specific to Rrs1Rh4 and do not detect other Rrs1 genes/alleles. The Rrs1Rh4 diagnostic markers represent a resource that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars. Thirteen out of the 55 most resistant Syrian and Jordanian landraces were shown to contain markers specific to Rrs1Rh4. One of these lines came from Jordan, with the remaining 12 lines from different locations in Syria. One of the Syrian landraces containing Rrs1Rh4 was also shown to have Rrs2. The remaining landraces that performed well against rhynchosporium in the field are likely to contain other resistance genes and represent an important novel resource yet to be exploited by European breeders.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Sitios Genéticos , Hordeum/genética , Hordeum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Alelos , Segregación Cromosómica/genética , Ecotipo , Exoma/genética , Genes de Plantas , Marcadores Genéticos , Genotipo , Geografía , Proteínas Fluorescentes Verdes/metabolismo , Jordania , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Siria
2.
Theor Appl Genet ; 132(4): 1089-1107, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30547184

RESUMEN

KEY MESSAGE: Major resistance gene to rhynchosporium, Rrs18, maps close to the telomere on the short arm of chromosome 6H in barley. Rhynchosporium or barley scald caused by a fungal pathogen Rhynchosporium commune is one of the most destructive and economically important diseases of barley in the world. Testing of Steptoe × Morex and CIho 3515 × Alexis doubled haploid populations has revealed a large effect QTL for resistance to R. commune close to the telomere on the short arm of chromosome 6H, present in both populations. Mapping markers flanking the QTL from both populations onto the 2017 Morex genome assembly revealed a rhynchosporium resistance locus independent of Rrs13 that we named Rrs18. The causal gene was fine mapped to an interval of 660 Kb using Steptoe × Morex backcross 1 S2 and S3 lines with molecular markers developed from Steptoe exome capture variant calling. Sequencing RNA from CIho 3515 and Alexis revealed that only 4 genes within the Rrs18 interval were transcribed in leaf tissue with a serine/threonine protein kinase being the most likely candidate for Rrs18.


Asunto(s)
Ascomicetos/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Hordeum/genética , Hordeum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Ascomicetos/aislamiento & purificación , Cruzamientos Genéticos , Genes de Plantas , Marcadores Genéticos , Anotación de Secuencia Molecular , Mapeo Físico de Cromosoma , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
3.
Theor Appl Genet ; 131(12): 2513-2528, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30151748

RESUMEN

KEY MESSAGE: Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1. Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Hordeum/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Estudios de Asociación Genética , Marcadores Genéticos , Genotipo , Hordeum/microbiología , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple
4.
New Phytol ; 214(4): 1657-1672, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28386988

RESUMEN

Pathogen-associated molecular patterns (PAMPs) are detected by plant pattern recognition receptors (PRRs), which gives rise to PAMP-triggered immunity (PTI). We characterized a novel fungal PAMP, Cell Death Inducing 1 (RcCDI1), identified in the Rhynchosporium commune transcriptome sampled at an early stage of barley (Hordeum vulgare) infection. The ability of RcCDI1 and its homologues from different fungal species to induce cell death in Nicotiana benthamiana was tested following agroinfiltration or infiltration of recombinant proteins produced by Pichia pastoris. Virus-induced gene silencing (VIGS) and transient expression of Phytophthora infestans effectors PiAVR3a and PexRD2 were used to assess the involvement of known components of PTI in N. benthamiana responses to RcCDI1. RcCDI1 was highly upregulated early during barley colonization with R. commune. RcCDI1 and its homologues from different fungal species, including Zymoseptoria tritici, Magnaporthe oryzae and Neurospora crassa, exhibited PAMP activity, inducing cell death in Solanaceae but not in other families of dicots or monocots. RcCDI1-triggered cell death was shown to require N. benthamiana Brassinosteroid insensitive 1-Associated Kinase 1 (NbBAK1), N. benthamiana suppressor of BIR1-1 (NbSOBIR1) and N. benthamiana SGT1 (NbSGT1), but was not suppressed by PiAVR3a or PexRD2. We report the identification of a novel Ascomycete PAMP, RcCDI1, recognized by Solanaceae but not by monocots, which activates cell death through a pathway that is distinct from that triggered by the oomycete PAMP INF1.


Asunto(s)
Ascomicetos/patogenicidad , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Solanaceae/microbiología , Secuencia de Aminoácidos , Ascomicetos/genética , Ascomicetos/fisiología , Muerte Celular , Secuencia Conservada , Proteínas Fúngicas/genética , Hordeum/microbiología , Filogenia , Células Vegetales/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanaceae/citología , Nicotiana/genética , Nicotiana/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
BMC Genomics ; 17(1): 953, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27875982

RESUMEN

BACKGROUND: The Rhynchosporium species complex consists of hemibiotrophic fungal pathogens specialized to different sweet grass species including the cereal crops barley and rye. A sexual stage has not been described, but several lines of evidence suggest the occurrence of sexual reproduction. Therefore, a comparative genomics approach was carried out to disclose the evolutionary relationship of the species and to identify genes demonstrating the potential for a sexual cycle. Furthermore, due to the evolutionary very young age of the five species currently known, this genus appears to be well-suited to address the question at the molecular level of how pathogenic fungi adapt to their hosts. RESULTS: The genomes of the different Rhynchosporium species were sequenced, assembled and annotated using ab initio gene predictors trained on several fungal genomes as well as on Rhynchosporium expressed sequence tags. Structures of the rDNA regions and genome-wide single nucleotide polymorphisms provided a hypothesis for intra-genus evolution. Homology screening detected core meiotic genes along with most genes crucial for sexual recombination in ascomycete fungi. In addition, a large number of cell wall-degrading enzymes that is characteristic for hemibiotrophic and necrotrophic fungi infecting monocotyledonous hosts were found. Furthermore, the Rhynchosporium genomes carry a repertoire of genes coding for polyketide synthases and non-ribosomal peptide synthetases. Several of these genes are missing from the genome of the closest sequenced relative, the poplar pathogen Marssonina brunnea, and are possibly involved in adaptation to the grass hosts. Most importantly, six species-specific genes coding for protein effectors were identified in R. commune. Their deletion yielded mutants that grew more vigorously in planta than the wild type. CONCLUSION: Both cryptic sexuality and secondary metabolites may have contributed to host adaptation. Most importantly, however, the growth-retarding activity of the species-specific effectors suggests that host adaptation of R. commune aims at extending the biotrophic stage at the expense of the necrotrophic stage of pathogenesis. Like other apoplastic fungi Rhynchosporium colonizes the intercellular matrix of host leaves relatively slowly without causing symptoms, reminiscent of the development of endophytic fungi. Rhynchosporium may therefore become an object for studying the mutualism-parasitism transition.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/genética , Genoma Fúngico , Genómica , Especificidad del Huésped , Filogenia , Poaceae/microbiología , Secuencia de Aminoácidos , Ascomicetos/metabolismo , ADN Intergénico , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Genómica/métodos , Familia de Multigenes , Metabolismo Secundario/genética
6.
Nature ; 461(7262): 393-8, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19741609

RESUMEN

Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.


Asunto(s)
Genoma/genética , Phytophthora infestans/genética , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Proteínas Algáceas/genética , Elementos Transponibles de ADN/genética , ADN Intergénico/genética , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Humanos , Irlanda , Datos de Secuencia Molecular , Necrosis , Fenotipo , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/inmunología , Solanum tuberosum/inmunología , Inanición
7.
BMC Microbiol ; 14: 308, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25492044

RESUMEN

BACKGROUND: The oomycete Phytophthora infestans possesses active RNA silencing pathways, which presumably enable this plant pathogen to control the large numbers of transposable elements present in its 240 Mb genome. Small RNAs (sRNAs), central molecules in RNA silencing, are known to also play key roles in this organism, notably in regulation of critical effector genes needed for infection of its potato host. RESULTS: To identify additional classes of sRNAs in oomycetes, we mapped deep sequencing reads to transfer RNAs (tRNAs) thereby revealing the presence of 19-40 nt tRNA-derived RNA fragments (tRFs). Northern blot analysis identified abundant tRFs corresponding to half tRNA molecules. Some tRFs accumulated differentially during infection, as seen by examining sRNAs sequenced from P. infestans-potato interaction libraries. The putative connection between tRF biogenesis and the canonical RNA silencing pathways was investigated by employing hairpin RNA-mediated RNAi to silence the genes encoding P. infestans Argonaute (PiAgo) and Dicer (PiDcl) endoribonucleases. By sRNA sequencing we show that tRF accumulation is PiDcl1-independent, while Northern hybridizations detected reduced levels of specific tRNA-derived species in the PiAgo1 knockdown line. CONCLUSIONS: Our findings extend the sRNA diversity in oomycetes to include fragments derived from non-protein-coding RNA transcripts and identify tRFs with elevated levels during infection of potato by P. infestans.


Asunto(s)
Interacciones Huésped-Patógeno , Estadios del Ciclo de Vida , Phytophthora infestans/fisiología , Enfermedades de las Plantas/microbiología , ARN de Transferencia/metabolismo , Solanum tuberosum/microbiología , Northern Blotting , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética
8.
Nature ; 450(7166): 115-8, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17914356

RESUMEN

Bacterial, oomycete and fungal plant pathogens establish disease by translocation of effector proteins into host cells, where they may directly manipulate host innate immunity. In bacteria, translocation is through the type III secretion system, but analogous processes for effector delivery are uncharacterized in fungi and oomycetes. Here we report functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors. We use the Phytophthora infestans RXLR-EER-containing protein Avr3a as a reporter for translocation because it triggers RXLR-EER-independent hypersensitive cell death following recognition within plant cells that contain the R3a resistance protein. We show that Avr3a, with or without RXLR-EER motifs, is secreted from P. infestans biotrophic structures called haustoria, demonstrating that these motifs are not required for targeting to haustoria or for secretion. However, following replacement of Avr3a RXLR-EER motifs with alanine residues, singly or in combination, or with residues KMIK-DDK--representing a change that conserves physicochemical properties of the protein--P. infestans fails to deliver Avr3a or an Avr3a-GUS fusion protein into plant cells, demonstrating that these motifs are required for translocation. We show that RXLR-EER-encoding genes are transcriptionally upregulated during infection. Bioinformatic analysis identifies 425 potential genes encoding secreted RXLR-EER class proteins in the P. infestans genome. Identification of this class of proteins provides unparalleled opportunities to determine how oomycetes manipulate hosts to establish infection.


Asunto(s)
Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Nicotiana/metabolismo , Phytophthora/metabolismo , Señales de Clasificación de Proteína , Solanum tuberosum/metabolismo , Alanina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biología Computacional , Pectobacterium/genética , Phytophthora/química , Transporte de Proteínas , Pseudomonas syringae/genética , Solanum tuberosum/microbiología , Nicotiana/microbiología
9.
New Phytol ; 191(3): 763-776, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21539575

RESUMEN

• A detailed molecular understanding of how oomycete plant pathogens evade disease resistance is essential to inform the deployment of durable resistance (R) genes. • Map-based cloning, transient expression in planta, pathogen transformation and DNA sequence variation across diverse isolates were used to identify and characterize PiAVR2 from potato late blight pathogen Phytophthora infestans. • PiAVR2 is an RXLR-EER effector that is up-regulated during infection, accumulates at the site of haustoria formation, and is recognized inside host cells by potato protein R2. Expression of PiAVR2 in a virulent P. infestans isolate conveys a gain-of-avirulence phenotype, indicating that this is a dominant gene triggering R2-dependent disease resistance. PiAVR2 presence/absence polymorphisms and differential transcription explain virulence on R2 plants. Isolates infecting R2 plants express PiAVR2-like, which evades recognition by R2. PiAVR2 and PiAVR2-like differ in 13 amino acids, eight of which are in the C-terminal effector domain; one or more of these determines recognition by R2. Nevertheless, few polymorphisms were observed within each gene in pathogen isolates, suggesting limited selection pressure for change within PiAVR2 and PiAVR2-like. • Our results direct a search for R genes recognizing PiAVR2-like, which, deployed with R2, may exert strong selection pressure against the P. infestans population.


Asunto(s)
Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/inmunología , Polimorfismo Genético/genética , Proteínas/metabolismo , Solanum tuberosum/fisiología , Secuencia de Aminoácidos , Mapeo Cromosómico , Clonación Molecular , Regulación de la Expresión Génica , Genes Dominantes/genética , Genes de Plantas/genética , Datos de Secuencia Molecular , Phytophthora infestans/genética , Phytophthora infestans/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Estructura Terciaria de Proteína , Proteínas/genética , Solanum/genética , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
Front Plant Sci ; 12: 747661, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745181

RESUMEN

Ramularia collo-cygni is the causal agent of Ramularia leaf spot disease (RLS) on barley and became, during the recent decades, an increasing threat for farmers across the world. Here, we analyze morphological, transcriptional, and metabolic responses of two barley cultivars having contrasting tolerance to RLS, when infected by an aggressive or mild R. collo-cygni isolate. We found that fungal biomass in leaves of the two cultivars does not correlate with their tolerance to RLS, and both cultivars displayed cell wall reinforcement at the point of contact with the fungal hyphae. Comparative transcriptome analysis identified that the largest transcriptional differences between cultivars are at the early stages of fungal colonization with differential expression of kinases, calmodulins, and defense proteins. Weighted gene co-expression network analysis identified modules of co-expressed genes, and hub genes important for cultivar responses to the two R. collo-cygni isolates. Metabolite analyses of the same leaves identified defense compounds such as p-CHDA and serotonin, correlating with responses observed at transcriptome and morphological level. Together these all-round responses of barley to R. collo-cygni provide molecular tools for further development of genetic and physiological markers that may be tested for improving tolerance of barley to this fungal pathogen.

11.
Science ; 373(6556): 774-779, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34385392

RESUMEN

The oomycete Phytophthora infestans is a damaging crop pathogen and a model organism to study plant-pathogen interactions. We report the discovery of a family of copper-dependent lytic polysaccharide monooxygenases (LPMOs) in plant pathogenic oomycetes and its role in plant infection by P. infestans We show that LPMO-encoding genes are up-regulated early during infection and that the secreted enzymes oxidatively cleave the backbone of pectin, a charged polysaccharide in the plant cell wall. The crystal structure of the most abundant of these LPMOs sheds light on its ability to recognize and degrade pectin, and silencing the encoding gene in P. infestans inhibits infection of potato, indicating a role in host penetration. The identification of LPMOs as virulence factors in pathogenic oomycetes opens up opportunities in crop protection and food security.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Pectinas/metabolismo , Phytophthora infestans/enzimología , Enfermedades de las Plantas/parasitología , Solanum lycopersicum/parasitología , Solanum tuberosum/parasitología , Cobre , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Modelos Moleculares , Oxidación-Reducción , Phytophthora infestans/genética , Phytophthora infestans/patogenicidad , Hojas de la Planta/parasitología , Polisacáridos/metabolismo , Conformación Proteica , Dominios Proteicos , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
12.
Cell Microbiol ; 10(11): 2271-84, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18637942

RESUMEN

Phytophthora infestans causes late-blight, a devastating and re-emerging disease of potato crops. During the early stages of infection, P. infestans differentiates infection-specific structures such as appressoria for host epidermal cell penetration, followed by infection vesicles, and haustoria to establish a biotrophic phase of interaction. Here we report the cloning, from a suppression subtractive hybridization library, of a P. infestans gene called Pihmp1 encoding a putative glycosylated protein with four closely spaced trans-membrane helices. Pihmp1 expression is upregulated in germinating cysts and in germinating cysts with appressoria, and significantly upregulated throughout infection of potato. Transient gene silencing of Pihmp1 led to loss of pathogenicity and indicated involvement of this gene in the penetration and early infection processes of P. infestans. P. infestans transformants expressing a Pihmp1::monomeric red fluorescent protein (mRFP) fusion demonstrated that Pihmp1 was translated in germinating sporangia, germinating cysts and appressoria, accumulated in the appressorium, and was located at the haustorial membrane during infection. Furthermore, we discovered that haustorial structures are formed over a 3 h period, maturing for up to 12 h, and that their formation is initiated only at sites on the surface of intercellular hyphae where Pihmp1::mRFP is localized. We propose that Pihmp1 is an integral membrane protein that provides physical stability to the plasma membrane of P. infestans infection structures. We have provided the first evidence that the surface of oomycete haustoria possess proteins specific to these biotrophic structures, and that formation of biotrophic structures (infection vesicles and haustoria) is essential to successful host colonization by P. infestans.


Asunto(s)
Proteínas Algáceas/metabolismo , Proteínas de la Membrana/metabolismo , Phytophthora infestans/citología , Phytophthora infestans/fisiología , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Silenciador del Gen , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Phytophthora infestans/genética , Phytophthora infestans/patogenicidad , Hojas de la Planta/microbiología , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Solanum tuberosum/anatomía & histología
13.
Mol Plant Microbe Interact ; 21(4): 433-47, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18321189

RESUMEN

Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P. infestans genes were found to exhibit significant differential expression between developmental transitions, with approximately (1)/(10) being stage-specific and most changes occurring during zoosporogenesis. Quantitative reverse-transcription polymerase chain reaction assays confirmed the robustness of the array results and showed that similar patterns of differential expression were obtained regardless of whether hyphae were from laboratory media or infected tomato. Differentially expressed genes encode potential cellular regulators, especially protein kinases; metabolic enzymes such as those involved in glycolysis, gluconeogenesis, or the biosynthesis of amino acids or lipids; regulators of DNA synthesis; structural proteins, including predicted flagellar proteins; and pathogenicity factors, including cell-wall-degrading enzymes, RXLR effector proteins, and enzymes protecting against plant defense responses. Curiously, some stage-specific transcripts do not appear to encode functional proteins. These findings reveal many new aspects of oomycete biology, as well as potential targets for crop protection chemicals.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Phytophthora/crecimiento & desarrollo , Phytophthora/genética , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcripción Genética
14.
Fungal Genet Biol ; 45(6): 954-62, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18439859

RESUMEN

The asexual multinucleated sporangia of Phytophthora infestans can germinate directly through a germ tube or indirectly by releasing zoospores. The molecular mechanisms controlling sporangial cytokinesis or sporangial cleavage, and zoospore release are largely unknown. Sporangial cleavage is initiated by a cold shock that eventually compartmentalizes single nuclei within each zoospore. Comparison of EST representation in different cDNA libraries revealed a putative ATP-dependent DEAD-box RNA-helicase gene in P. infestans, Pi-RNH1, which has a 140-fold increased expression level in young zoospores compared to uncleaved sporangia. RNA interference was employed to determine the role of Pi-RNH1 in zoospore development. Silencing efficiencies of up to 99% were achieved in some transiently-silenced lines. These Pi-RNH1-silenced lines produced large aberrant zoospores that had undergone partial cleavage and often had multiple flagella on their surface. Transmission electron microscopy revealed that cytoplasmic vesicles fused in the silenced lines, resulting in the formation of large vesicles. The Pi-RNH1-silenced zoospores were also sensitive to osmotic pressure and often ruptured upon release from the sporangia. These findings indicate that Pi-RNH1 has a major function in zoospore development and its potential role in cytokinesis is discussed.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Phytophthora/enzimología , Phytophthora/patogenicidad , Enfermedades de las Plantas/parasitología , Esporas/crecimiento & desarrollo , Proteínas Algáceas/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Silenciador del Gen , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Fenotipo , Filogenia , Phytophthora/genética , Phytophthora/fisiología , Interferencia de ARN , Esporas/enzimología , Esporas/genética , Esporas/ultraestructura
15.
Mol Plant Microbe Interact ; 18(2): 158-68, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15720085

RESUMEN

The tomato Hero A gene is the only member of a multigene family that confers a high level (>80%) of resistance to all the economically important pathotypes of potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida. Although the resistance levels of transgenic tomato lines were similar to those of the tomato line LA1792 containing the introgressed Hero multigene family, transgenic potato plants expressing the tomato Hero A gene are not resistant to PCNs. Comparative microscopy studies of in vitro infected roots of PCN-susceptible tomato cv. Money Maker, the resistant breeding line LA1792, and transgenic line L10 with Ro1 pathotype have revealed no statistically significant difference in the number of juveniles invading roots. However, syncytia (specialized feeding cells) induced in LA1792 and L10 roots mostly were found to have degenerated a few days after their induction, and a few surviving syncytia were able to support only the development of males rather than females. Thus, the ratio between males and females was biased towards males on LA1792 and L10 roots. A series of changes occur in resistant plants leading to formation of a layer of necrotic cells separating the syncytium from stellar conductive tissues and this is followed by degradation of the syncytium. Although the Hero A gene is expressed in all tissues, including roots, stems, leaves, and flower buds, its expression is upregulated in roots in response to PCN infection. Moreover, the expression profiles of the Hero A correlates with the timing of death of the syncytium.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Enfermedades de las Plantas/parasitología , Solanum lycopersicum/genética , Solanum lycopersicum/parasitología , Tylenchida/patogenicidad , Animales , Genes de Plantas , Inmunidad Innata/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/parasitología , Plantas Modificadas Genéticamente , Solanum tuberosum/parasitología
16.
Mol Plant Microbe Interact ; 17(9): 943-50, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15384484

RESUMEN

Soft rot Erwinia spp., like other closely related plant pathogens, possess a type III secretion system (TTSS) (encoded by the hrp gene cluster) implicated in disease development. We report the sequence of the entire hrp gene cluster and adjacent dsp genes in Erwinia carotovora subsp. atroseptica SCRI1039. The cluster is similar in content and structural organization to that in E. amylovora. However, eight putative genes of unknown function located within the E. carotovora subsp. atroseptica cluster do not have homologues in the E. amylovora cluster. An arrayed set of Tn5 insertional mutants (mutation grid) was constructed and pooled to allow rapid isolation of mutants for any given gene by polymerase chain reaction screening. This novel approach was used to obtain mutations in two structural genes (hrcC and hrcV), the effector gene dspE/A, and the helper gene hrpN. An improved pathogenicity assay revealed that these mutations led to significantly reduced virulence, showing that both the putative E. carotovora subsp. atroseptica TTSS-delivered effector and helper proteins are required for potato infection.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Pectobacterium carotovorum/genética , Enfermedades de las Plantas/microbiología , Elementos Transponibles de ADN , Genes de Plantas/genética , Familia de Multigenes , Mutación , Pectobacterium carotovorum/patogenicidad
17.
Commun Integr Biol ; 6(6): e25890, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24563702

RESUMEN

Advances in genome sequencing technologies have enabled generation of unprecedented information on genome content and organization. Eukaryote genomes in particular may contain large populations of transposable elements (TEs) and other repeated sequences. Active TEs can result in insertional mutations, altered transcription levels and ectopic recombination of DNA. The genome of the oomycete plant pathogen, Phytophthora infestans, contains vast numbers of TE sequences. There are also hundreds of predicted disease-promoting effector proteins, predominantly located in TE-rich genomic regions. Expansion of effector gene families is also a genomic signature of related oomycetes such as P. sojae. Deep sequencing of small RNAs (sRNAs) from P. infestans has identified sRNAs derived from all families of transposons, highlighting the importance of RNA silencing for maintaining these genomic invaders in an inactive form. Small RNAs were also identified from specific effector encoding genes, possibly leading to RNA silencing of these genes and variation in pathogenicity and virulence toward plant resistance genes. Similar findings have also recently been made for the distantly related species, P. sojae. Small RNA "hotspots" originating from arrays of amplified gene sequences, or from genes displaying overlapping antisense transcription, were also identified in P. infestans. These findings suggest a major role for RNA silencing processes in the adaptability and diversification of these economically important plant pathogens. Here we review the latest progress and understanding of gene silencing in oomycetes with emphasis on transposable elements and sRNA-associated events.

18.
Mol Plant Pathol ; 13(9): 986-97, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22738626

RESUMEN

Rhynchosporium commune is a haploid fungus causing scald or leaf blotch on barley, other Hordeum spp. and Bromus diandrus. TAXONOMY: Rhynchosporium commune is an anamorphic Ascomycete closely related to the teleomorph Helotiales genera Oculimacula and Pyrenopeziza. DISEASE SYMPTOMS: Rhynchosporium commune causes scald-like lesions on leaves, leaf sheaths and ears. Early symptoms are generally pale grey oval lesions. With time, the lesions acquire a dark brown margin with the centre of the lesion remaining pale green or pale brown. Lesions often merge to form large areas around which leaf yellowing is common. Infection frequently occurs in the leaf axil, which can lead to chlorosis and eventual death of the leaf. LIFE CYCLE: Rhynchosporium commune is seed borne, but the importance of this phase of the disease is not fully understood. Debris from previous crops and volunteers, infected from the stubble from previous crops, are considered to be the most important sources of the disease. Autumn-sown crops can become infected very soon after sowing. Secondary spread of disease occurs mainly through splash dispersal of conidia from infected leaves. Rainfall at the stem extension growth stage is the major environmental factor in epidemic development. DETECTION AND QUANTIFICATION: Rhynchosporium commune produces unique beak-shaped, one-septate spores both on leaves and in culture. The development of a specific polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) has allowed the identification of asymptomatic infection in seeds and during the growing season. DISEASE CONTROL: The main measure for the control of R. commune is the use of fungicides with different modes of action, in combination with the use of resistant cultivars. However, this is constantly under review because of the ability of the pathogen to adapt to host plant resistance and to develop fungicide resistance.


Asunto(s)
Agricultura , Ascomicetos/fisiología , Hordeum/crecimiento & desarrollo , Hordeum/microbiología , Ascomicetos/clasificación , Hordeum/inmunología , Especificidad del Huésped/inmunología , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/estadística & datos numéricos
19.
Mob Genet Elements ; 2(2): 110-114, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22934246

RESUMEN

Transposable elements are ubiquitous residents in eukaryotic genomes. Often considered to be genomic parasites, they can lead to dramatic changes in genome organization, gene expression, and gene evolution. The oomycete plant pathogen Phytophthora infestans has evolved a genome organization where core biology genes are predominantly located in genome regions that have relatively few resident transposons. In contrast, disease effector-encoding genes are most frequently located in rapidly evolving genomic regions that are rich in transposons. P. infestans, as a eukaryote, likely uses RNA silencing to minimize the activity of transposons. We have shown that fusion of a short interspersed element (SINE) to an effector gene in P. infestans leads to the silencing of both the introduced fusion and endogenous homologous sequences. This is also likely to occur naturally in the genome of P. infestans, as transcriptional inactivation of effectors is known to occur, and over half of the translocated "RXLR class" of effectors are located within 2 kb of transposon sequences in the P. infestans genome. In this commentary, we review the diverse transposon inventory of P. infestans, its control by RNA silencing, and consequences for expression modulation of nearby effector genes in this economically important plant pathogen.

20.
PLoS One ; 7(12): e51399, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23272103

RESUMEN

Phytophthora infestans is the oomycete pathogen responsible for the devastating late blight disease on potato and tomato. There is presently an intense research focus on the role(s) of effectors in promoting late blight disease development. However, little is known about how they are regulated, or how diversity in their expression may be generated among different isolates. Here we present data from investigation of RNA silencing processes, characterized by non-coding small RNA molecules (sRNA) of 19-40 nt. From deep sequencing of sRNAs we have identified sRNAs matching numerous RxLR and Crinkler (CRN) effector protein genes in two isolates differing in pathogenicity. Effector gene-derived sRNAs were present in both isolates, but exhibited marked differences in abundance, especially for CRN effectors. Small RNAs in P. infestans grouped into three clear size classes of 21, 25/26 and 32 nt. Small RNAs from all size classes mapped to RxLR effector genes, but notably 21 nt sRNAs were the predominant size class mapping to CRN effector genes. Some effector genes, such as PiAvr3a, to which sRNAs were found, also exhibited differences in transcript accumulation between the two isolates. The P. infestans genome is rich in transposable elements, and the majority of sRNAs of all size classes mapped to these sequences, predominantly to long terminal repeat (LTR) retrotransposons. RNA silencing of Dicer and Argonaute genes provided evidence that generation of 21 nt sRNAs is Dicer-dependent, while accumulation of longer sRNAs was impacted by silencing of Argonaute genes. Additionally, we identified six microRNA (miRNA) candidates from our sequencing data, their precursor sequences from the genome sequence, and target mRNAs. These miRNA candidates have features characteristic of both plant and metazoan miRNAs.


Asunto(s)
Elementos Transponibles de ADN , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , ARN Pequeño no Traducido/genética , ARN/genética , Northern Blotting , Mapeo Cromosómico/métodos , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Solanum lycopersicum , MicroARNs/metabolismo , Modelos Biológicos , Modelos Genéticos , Enfermedades de las Plantas/microbiología , Interferencia de ARN , Solanum tuberosum , Secuencias Repetidas Terminales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA