Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 186(21): 4632-4651.e23, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776858

RESUMEN

The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Lactante , Humanos , Preescolar , SARS-CoV-2/metabolismo , Multiómica , Citocinas/metabolismo , Interferón-alfa , Inmunidad Mucosa
2.
J Cell Sci ; 135(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35502650

RESUMEN

The primary cilium is a cellular compartment specialized for receipt of extracellular signals that is essential for development and homeostasis. Although intraciliary responses to engagement of ciliary receptors are well studied, fundamental questions remain about the mechanisms and molecules that transduce ciliary signals into responses in the cytoplasm. During fertilization in the bi-ciliated alga Chlamydomonas reinhardtii, ciliary adhesion between plus and minus gametes triggers an immediate ∼10-fold increase in cellular cAMP and consequent responses in the cytoplasm required for cell-cell fusion. Here, we identify a new participant in ciliary signaling, Gamete-Specific Protein Kinase (GSPK). GSPK is essential for the adhesion-induced cAMP increase and for rapid gamete fusion. The protein is in the cytoplasm, and the entire cellular complement responds to a signal from the cilium by becoming phosphorylated within 1 min after ciliary receptor engagement. Unlike all other cytoplasmic events in ciliary signaling, GSPK phosphorylation is not responsive to exogenously added cAMP. Thus, during ciliary signaling in Chlamydomonas, a cytoplasmic protein is required to rapidly interpret a still uncharacterized ciliary signal to generate a cytoplasmic response.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cilios/metabolismo , Citoplasma/metabolismo , Humanos , Proteínas Quinasas/metabolismo
3.
Clin Infect Dis ; 76(3): e503-e506, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35925647

RESUMEN

Our study demonstrates that neither 2020 convalescent plasma (CP) nor 2019/2020 intravenous immunoglobulin (IVIG) neutralizes Omicron subvariants BA.1 to BA.5. In contrast, 2020 hyperimmune anti-severe acute respiratory syndrome coronavirus 2 IVIG (hCoV-2IG) lots neutralized Omicron variants of concern, similar to results with 2022 CP from BA.1 breakthrough infections. Therefore, high-titer hCoV-2IG and CP could be evaluated for treatment of high-risk individuals infected with circulating Omicron subvariants.


Asunto(s)
COVID-19 , Inmunoglobulinas Intravenosas , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , SARS-CoV-2 , Sueroterapia para COVID-19
4.
EMBO J ; 35(7): 773-90, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26912722

RESUMEN

Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT-B complex consists of 9-10 stably associated core subunits and six "peripheral" subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six "peripheral"IFT-B subunits of Chlamydomonas reinhardtiias recombinant proteins and show that they form a stable complex independently of the IFT-B core. We suggest a nomenclature of IFT-B1 (core) and IFT-B2 (peripheral) for the two IFT-B subcomplexes. We demonstrate that IFT88, together with the N-terminal domain of IFT52, is necessary to bridge the interaction between IFT-B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT-B1/IFT-B2 complex formation. Furthermore, we show that of the three IFT-B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αß-tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface-exposed residues.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Proteínas de Plantas/metabolismo , Tubulina (Proteína)/metabolismo , Cristalografía por Rayos X , Proteínas de Plantas/química
5.
J Biol Chem ; 292(18): 7462-7473, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28298440

RESUMEN

Motile cilia are found on unicellular organisms such as the green alga Chlamydomonas reinhardtii, on sperm cells, and on cells that line the trachea and fallopian tubes in mammals. The motility of cilia relies on a number of large protein complexes including the force-generating outer dynein arms (ODAs). The transport of ODAs into cilia has been previously shown to require the transport adaptor ODA16, as well as the intraflagellar transport (IFT) protein IFT46, but the molecular mechanism by which ODAs are recognized and transported into motile cilia is still unclear. Here, we determined the high-resolution crystal structure of C. reinhardtii ODA16 (CrODA16) and mapped the binding to IFT46 and ODAs. The CrODA16 structure revealed a small 80-residue N-terminal domain and a C-terminal 8-bladed ß-propeller domain that are both required for the association with the N-terminal 147 residues of IFT46. The dissociation constant of the IFT46-ODA16 complex was 200 nm, demonstrating that CrODA16 associates with the IFT complex with an affinity comparable with that of the individual IFT subunits. Furthermore, we show, using ODAs extracted from the axonemes of C. reinhardtii, that the C-terminal ß-propeller but not the N-terminal domain of CrODA16 is required for the interaction with ODAs. These data allowed us to present an architectural model for ODA16-mediated IFT of ODAs.


Asunto(s)
Proteínas Portadoras , Chlamydomonas reinhardtii , Dineínas , Flagelos , Proteínas de Plantas , Axonema/química , Axonema/genética , Axonema/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cristalografía por Rayos X , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Flagelos/química , Flagelos/genética , Flagelos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios Proteicos , Transporte de Proteínas/fisiología
6.
Plant J ; 73(5): 873-82, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23137232

RESUMEN

The unicellular green alga Chlamydomonas reinhardtii is a versatile model for fundamental and biotechnological research. A wide range of tools for genetic manipulation have been developed for this alga, but specific modification of nuclear genes is still not routinely possible. Here, we present a nuclear gene targeting strategy for Chlamydomonas that is based on the application of zinc-finger nucleases (ZFNs). Our approach includes (i) design of gene-specific ZFNs using available online tools, (ii) evaluation of the designed ZFNs in a Chlamydomonas in situ model system, (iii) optimization of ZFN activity by modification of the nuclease domain, and (iv) application of the most suitable enzymes for mutagenesis of an endogenous gene. Initially, we designed a set of ZFNs to target the COP3 gene that encodes the light-activated ion channel channelrhodopsin-1. To evaluate the designed ZFNs, we constructed a model strain by inserting a non-functional aminoglycoside 3'-phosphotransferase VIII (aphVIII) selection marker interspaced with a short COP3 target sequence into the nuclear genome. Upon co-transformation of this recipient strain with the engineered ZFNs and an aphVIII DNA template, we were able to restore marker activity and select paromomycin-resistant (Pm-R) clones with expressing nucleases. Of these Pm-R clones, 1% also contained a modified COP3 locus. In cases where cells were co-transformed with a modified COP3 template, the COP3 locus was specifically modified by homologous recombination between COP3 and the supplied template DNA. We anticipate that this ZFN technology will be useful for studying the functions of individual genes in Chlamydomonas.


Asunto(s)
Chlamydomonas reinhardtii/genética , Endonucleasas/genética , Marcación de Gen/métodos , Proteínas Algáceas/genética , Animales , Anticuerpos , Núcleo Celular/genética , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/inmunología , Ingeniería Genética , Recombinación Homóloga , Kanamicina Quinasa/genética , Mutagénesis , Organismos Modificados Genéticamente , Paromomicina/farmacología , Conejos , Proteínas Recombinantes , Transformación Genética , Dedos de Zinc
7.
Int J Biol Macromol ; 245: 125492, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37343610

RESUMEN

Calcium (Ca2+) signaling plays a major role in regulating multiple processes in living cells. The photoreceptor potential in Chlamydomonas triggers the generation of all or no flagellar Ca2+ currents that cause membrane depolarization across the eyespot and flagella. Modulation in membrane potential causes changes in the flagellar waveform, and hence, alters the beating patterns of Chlamydomonas flagella. The rhodopsin-mediated eyespot membrane potential is generated by the photoreceptor Ca2+ current or P-current however, the flagellar Ca2+ currents are mediated by unidentified voltage-gated calcium (VGCC or CaV) and potassium channels (VGKC). The voltage-gated ion channel that associates with ChRs to generate Ca2+ influx across the flagella and its cellular distribution has not yet been identified. Here, we identified putative VGCCs from algae and predicted their novel properties through insilico analysis. We further present experimental evidence on Chlamydomonas reinhardtii VGCCs to predict their novel physiological roles. Our experimental evidences showed that CrVGCC4 localizes to the eyespot and flagella of Chlamydomonas and associates with channelrhodopsins (ChRs). Further in silico interactome analysis of CrVGCCs suggested that they putatively interact with photoreceptor proteins, calcium signaling, and intraflagellar transport components. Expression analysis indicated that these VGCCs and their putative interactors can be perturbed by light stimuli. Collectively, our data suggest that VGCCs in general, and VGCC4 in particular, might be involved in the regulation of the photobehavioral response of Chlamydomonas.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Señalización del Calcio
8.
Viruses ; 15(10)2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37896908

RESUMEN

TNX-1800 is a preclinical stage synthetic-derived live attenuated chimeric horsepox virus vaccine engineered to express the SARS-CoV-2 spike (S) gene. The objectives of this study were to assess the safety, tolerability, and immunogenicity of TNX-1800 administration in Syrian golden hamsters and New Zealand white rabbits. Animals were vaccinated at three doses via percutaneous inoculation. The data showed that the single percutaneous administration of three TNX-1800 vaccine dose levels was well tolerated in both hamsters and rabbits. At all dose levels, rabbits were more decerning regarding vaccine site reaction than hamsters. Lastly, no TNX-1800 genomes could be detected at the site of vaccination. Post-vaccination, all animals had anti-SARS-CoV-2 spike protein IgG specific antibody responses. These data demonstrate that TNX-1800 infection was limited, asymptomatic, and cleared by the end of this study, and a single dose was able to generate immune responses.


Asunto(s)
COVID-19 , Poxviridae , Cricetinae , Conejos , Animales , Mesocricetus , SARS-CoV-2/genética , Vacunas Atenuadas/efectos adversos , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/genética , Anticuerpos Antivirales , Inmunoglobulina G , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes
9.
Antiviral Res ; 210: 105513, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592670

RESUMEN

Antibody-based therapy is emerging as a critical therapeutic countermeasure to treat acute viral infections by offering rapid protection against clinical disease. The advancements in structural biology made it feasible to rationalize monoclonal antibodies (mAbs) by identifying key and, possibly, neutralizing epitopes of viral proteins for therapeutic purposes. A critical component in assessing mAbs during pandemics requires the development of rapid but detailed methods to detect and quantitate the neutralization activity. In this study, we developed and optimized two high-content image (HCI)-based assays: one to detect viral proteins by staining and the second to quantify cytopathic viral effects by a label-free phenotypic assay. These assays were employed to screen for therapeutic antibodies against the monkeypox virus (MPXV) using surrogate poxviruses such as vaccinia virus (VACV). Plaque-based neutralization results confirmed the HCI data. The phenotypic assay found pox virus-induced syncytia formation in various cells, and we were able to quantitate and use this phenotype to screen mAbs. The HCI identified several potent VACV-neutralizing antibodies that showed in vitro efficacy against both clades of MPXV. In addition, a combination study of ST-246/tecovirimat/TPOXX a single neutralizing antibody Ab-40, showed synergistic activity against VACV in an in-vitro neutralization assay. This rapid high-content method utilizing state-of-the-art technologies enabled the evaluation of hundreds of mAbs quickly to identify several potent anti-MPXV neutralizing mAbs for further development.


Asunto(s)
Anticuerpos Antivirales , Monkeypox virus , Anticuerpos Neutralizantes , Virus Vaccinia/genética , Proteínas Virales , Anticuerpos Monoclonales/farmacología , Pruebas de Neutralización
10.
Vaccines (Basel) ; 11(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-38006014

RESUMEN

TNX-1800 is a synthetically derived live recombinant chimeric horsepox virus (rcHPXV) vaccine candidate expressing Wuhan SARS-CoV-2 spike (S) protein. The primary objective of this study was to evaluate the immunogenicity and efficacy of TNX-1800 in two nonhuman primate species challenged with USA-WA1/2020 SARS-CoV-2. TNX-1800 vaccination was well tolerated with no serious adverse events or significant changes in clinical parameters. A single dose of TNX-1800 generated humoral responses in African Green Monkeys and Cynomolgus Macaques, as measured by the total binding of anti-SARS-CoV-2 S IgG and neutralizing antibody titers against the USA-WA1/2020 strain. In addition, a single dose of TNX-1800 induced an interferon-gamma (IFN-γ)-mediated T-cell response in Cynomolgus Macaques. Following challenge with SARS-CoV-2, African Green and Cynomolgus Macaques exhibited rapid clearance of virus in the upper and lower respiratory tract. Future studies will assess the efficacy of TNX-1800 against newly emerging variants and demonstrate its safety in humans.

11.
medRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778389

RESUMEN

The dynamics of innate and adaptive immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to SARS-CoV-2 infection in infants and young children in the first weeks and months of life by analyzing blood samples collected before, during, and after infection with Omicron and Non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, were stably maintained for >300 days. Antigen-specific memory B cell (MCB) responses were durable for 150 days but waned thereafter. Somatic hypermutation of V-genes in MCB accumulated progressively over 9 months. The innate response was characterized by upregulation of activation markers on blood innate cells, and a plasma cytokine profile distinct from that seen in adults, with no inflammatory cytokines, but an early and transient accumulation of chemokines (CXCL10, IL8, IL-18R1, CSF-1, CX3CL1), and type I IFN. The latter was strongly correlated with viral load, and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell transcriptomics. Consistent with this, single-cell ATAC-seq revealed enhanced accessibility of chromatic loci targeted by interferon regulatory factors (IRFs) and reduced accessibility of AP-1 targeted loci, as well as traces of epigenetic imprinting in monocytes, during convalescence. Together, these data provide the first snapshot of immunity to infection during the initial weeks and months of life.

12.
Life (Basel) ; 10(11)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126644

RESUMEN

Light-gated ion channel and ion pump rhodopsins are widely used as optogenetic tools and these can control the electrically excitable cells as (1) they are a single-component system i.e., their light sensing and ion-conducting functions are encoded by the 7-transmembrane domains and, (2) they show fast kinetics with small dark-thermal recovery time. In cellular signaling, a signal receptor, modulator, and the effector components are involved in attaining synchronous regulation of signaling. Optical modulation of the multicomponent network requires either receptor to effector encoded in a single ORF or direct modulation of the effector domain through bypassing all upstream players. Recently discovered modular rhodopsins like rhodopsin guanylate cyclase (RhoGC) and rhodopsin phosphodiesterase (RhoPDE) paves the way to establish a proof of concept for utilization of complex rhodopsin (modular rhodopsin) for optogenetic applications. Light sensor coupled modular system could be expressed in any cell type and hence holds great potential in the advancement of optogenetics 2.0 which would enable manipulating the entire relevant cell signaling system. Here, we had identified 50 novel modular rhodopsins with variant domains and their diverse cognate signaling cascades encoded in a single ORF, which are associated with specialized functions in the cells. These novel modular algal rhodopsins have been characterized based on their sequence and structural homology with previously reported rhodopsins. The presented novel modular rhodopsins with various effector domains leverage the potential to expand the optogenetic tool kit to regulate various cellular signaling pathways across the diverse biological model systems.

13.
Viruses ; 12(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825063

RESUMEN

COVID-19 novel coronavirus (CoV) disease caused by severe acquired respiratory syndrome (SARS)-CoV-2 manifests severe lethal respiratory illness in humans and has recently developed into a worldwide pandemic. The lack of effective treatment strategy and vaccines against the SARS-CoV-2 poses a threat to human health. An extremely high infection rate and multi-organ secondary infection within a short period of time makes this virus more deadly and challenging for therapeutic interventions. Despite high sequence similarity and utilization of common host-cell receptor, human angiotensin-converting enzyme-2 (ACE2) for virus entry, SARS-CoV-2 is much more infectious than SARS-CoV. Structure-based sequence comparison of the N-terminal domain (NTD) of the spike protein of Middle East respiratory syndrome (MERS)-CoV, SARS-CoV, and SARS-CoV-2 illustrate three divergent loop regions in SARS-CoV-2, which is reminiscent of MERS-CoV sialoside binding pockets. Comparative binding analysis with host sialosides revealed conformational flexibility of SARS-CoV-2 divergent loop regions to accommodate diverse glycan-rich sialosides. These key differences with SARS-CoV and similarity with MERS-CoV suggest an evolutionary adaptation of SARS-CoV-2 spike glycoprotein reciprocal interaction with host surface sialosides to infect host cells with wide tissue tropism.


Asunto(s)
Betacoronavirus/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/química , Ácidos Siálicos/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Amino Azúcares/metabolismo , Betacoronavirus/fisiología , Sitios de Unión , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Ácido N-Acetilneuramínico/metabolismo , Unión Proteica , Dominios Proteicos , Receptores de Coronavirus , Receptores Virales/química , Receptores Virales/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , SARS-CoV-2 , Antígeno Sialil Lewis X/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tropismo Viral , Internalización del Virus
14.
Curr Biol ; 29(17): 2942-2947.e2, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31422889

RESUMEN

Cilia are ancient organelles used by unicellular and multicellular organisms not only for motility but also to receive and respond to multiple environmental cues, including light, odorants, morphogens, growth factors, and contact with cilia of other cells. Much is known about the cellular mechanisms that deliver membrane proteins to cilia during ciliogenesis. Execution of a ciliary signaling pathway, however, can critically depend on rapid alterations in the receptor composition of the cilium itself, and our understanding of the mechanisms that underlie these rapid, regulated alterations remains limited [1-6]. In the bi-ciliated, unicellular alga Chlamydomonas reinhardtii, interactions between cilia of mating type plus and mating type minus gametes mediated by adhesion receptors SAG1 and SAD1 activate a ciliary signaling pathway [7]. In response, a large, inactive pool of SAG1 on the plasma membrane of plus gametes rapidly becomes enriched in the peri-ciliary membrane and enters the cilia to become active and maintain and enhance ciliary adhesion and signaling [8-14]. Ciliary entry per se of SAG1 is independent of anterograde intraflagellar transport (IFT) [13], but the rapid apical enrichment requires cytoplasmic microtubules and the retrograde IFT motor, dynein 1b [14]. Whether the receptors move laterally within the plasma membrane or transit internally during redistribution is unknown. Here, in coupled immunolocalization/biochemical studies on SAG1, we show that, within minutes after gamete activation is initiated, cell-surface SAG1 is internalized, associates with an apico-basally polarized array of cytoplasmic microtubules, and returns to the cell surface at a peri-ciliary staging area for entry into cilia.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Transporte de Proteínas , Membrana Celular/metabolismo , Cilios/metabolismo , Microtúbulos/metabolismo , Transducción de Señal
15.
Sci Rep ; 6: 34646, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694882

RESUMEN

The bacterial type rhodopsins are present in all the three domains of life. In contrast to the animal type rhodopsin that performs mainly sensory functions in higher eukaryotes, the bacterial type rhodopsin could function as ion channel, pumps and as sensory proteins. The functioning of rhodopsin in higher eukaryotes requires the transport of rhodopsin from its site of synthesis to the ciliated outer segment of the photoreceptive cells. However, the trafficking of bacterial type rhodopsin from its site of synthesis to the position of action is not characterized. Here we present the first report for the existence of an IFT-interactome mediated trafficking of the bacterial type rhodopsins into eyespot and flagella of the Chlamydomonas. We show that there is a light-dependent, dynamic localization of rhodopsins between flagella and eyespot of Chlamydomonas. The involvement of IFT components in the rhodopsin trafficking was elucidated by the use of conditional IFT mutants. We found that rhodopsin can be co-immunoprecipitated with the components of IFT machinery and with other protein components required for the IFT-cargo complex formation. These findings show that light-regulated localization of rhodopsin is not restricted to animals thereby suggesting that rhodopsin trafficking is an IFT dependent ancient process.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Flagelos/metabolismo , Rodopsina/metabolismo , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Chlamydomonas reinhardtii/genética , Flagelos/genética , Luz , Microscopía Confocal , Mutación , Transporte de Proteínas/genética , Transporte de Proteínas/efectos de la radiación , Rodopsina/genética
16.
PLoS One ; 7(6): e39258, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737232

RESUMEN

BACKGROUND: Phospholipase C (PLC) is an enzyme that plays pivotal role in a number of signaling cascades. These are active in the plasma membrane and triggers cellular responses by catalyzing the hydrolysis of membrane phospholipids and thereby generating the secondary messengers. Phosphatidylinositol-PLC (PI-PLC) specifically interacts with phosphoinositide and/or phosphoinositol and catalyzes specific cleavage of sn-3- phosphodiester bond. Several isoforms of PLC are known to form and function as dimer but very little is known about the molecular basis of the dimerization and its importance in the lipid interaction. PRINCIPAL FINDINGS: We herein report that, the disruption of disulphide bond of a novel PI-specific PLC of C. reinhardtii (CrPLC) can modulate its interaction affinity with a set of phospholipids and also the stability of its dimer. CrPLC was found to form a mixture of higher oligomeric states with monomer and dimer as major species. Dimer adduct of CrPLC disappeared in the presence of DTT, which suggested the involvement of disulphide bond(s) in CrPLC oligomerization. Dimer-monomer equilibrium studies with the isolated fractions of CrPLC monomer and dimer supported the involvement of covalent forces in the dimerization of CrPLC. A disulphide bridge was found to be responsible for the dimerization and Cys7 seems to be involved in the formation of the disulphide bond. This crucial disulphide bond also modulated the lipid affinity of CrPLC. Oligomers of CrPLC were also captured in in vivo condition. CrPLC was mainly found to be localized in the plasma membrane of the cell. The cell surface localization of CrPLC may have significant implication in the downstream regulatory function of CrPLC. SIGNIFICANCE: This study helps in establishing the role of CrPLC (or similar proteins) in the quaternary structure of the molecule its affinities during lipid interactions.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Lípidos/química , Fosfolipasas de Tipo C/química , Secuencia de Aminoácidos , Biología Computacional/métodos , Cisteína/química , Dimerización , Disulfuros , Etiquetas de Secuencia Expresada , Isoenzimas/química , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fosfatidilinositoles/química , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Transducción de Señal , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA