Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Basic Microbiol ; : e2400035, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004868

RESUMEN

Nanomaterial synthesis is a growing study area because of its extensive range of uses. Nanoparticles' high surface-to-volume ratio and rapid interaction with various particles make them appealing for diverse applications. Traditional physical and chemical methods for creating metal nanoparticles are becoming outdated because they involve complex manufacturing processes, high energy consumption, and the formation of harmful by-products that pose major dangers to human health and the environment. Therefore, there is an increasing need to find alternative, cost-effective, dependable, biocompatible, and environmentally acceptable ways of producing nanoparticles. The process of synthesizing nanoparticles using microbes has become highly intriguing because of their ability to create nanoparticles of varying sizes, shapes, and compositions, each with unique physicochemical properties. Microbes are commonly used in nanoparticle production because they are easy to work with, can use low-cost materials, such as agricultural waste, are cheap to scale up, and can adsorb and reduce metal ions into nanoparticles through metabolic activities. Biogenic synthesis of nanoparticles provides a clean, nontoxic, ecologically friendly, and sustainable method using renewable ingredients for reducing metals and stabilizing nanoparticles. Nanomaterials produced by bacteria can serve as an effective pollution control method due to their many functional groups that can effectively target contaminants for efficient bioremediation, aiding in environmental cleanup. At the end of the paper, we will discuss the obstacles that hinder the use of biosynthesized nanoparticles and microbial-based nanoparticles. The paper aims to explore the sustainability of microorganisms in the burgeoning field of green nanotechnology.

2.
Bioorg Chem ; 141: 106868, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37738768

RESUMEN

The identification of effective and druggable cholinesterase inhibitors to treat progressive neurodegenerative Alzheimer's disorder remains a continuous drug discovery hunt. In this perspective, the present study investigates the design and discovery of pyrimidine-morpholine hybrids (5a-l) as potent cholinesterase inhibitors. Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction was employed to introduce the structural diversity on the pyrimidine heterocyclic core. A range of commercially available boronic acids was successfully coupled showing a high functional group tolerance. In vitro cholinesterase inhibitory potential using Ellman's method revealed significantly strong potency. Compound 5h bearing a meta-tolyl substituent at 2-position of pyrimidine ring emerged as a lead candidate against AChE with an inhibitory potency of 0.43 ± 0.42 µM, ∼38-fold stronger value than neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 5h also showed the lead inhibition against BuChE with an IC50 value of 2.5 ± 0.04 µM. The kinetics analysis of 5h revealed the non-competitive mode of inhibition against AChE whereas computational modelling results of potent leads depicted diverse contacts with the binding site amino acid residues. Molecular dynamics simulations revealed the stability of biomolecular system, while, ADME analysis demonstrated druglikeness behaviour of potent compounds. Overall, the investigated pyrimidine-morpholine scaffold presented a remarkable potential to be developed as efficacious anti-Alzheimer's drugs.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Inhibidores de la Colinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Estructura Molecular , Acetilcolinesterasa/metabolismo , Morfolinas/farmacología , Morfolinas/química , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
3.
Saudi Pharm J ; 31(11): 101823, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37965293

RESUMEN

Thymidine phosphorylase (TP) is an angiogenic enzyme. It is crucial for the development, invasion and metastasis of tumors as well as angiogenesis. In our current research, we examine how structurally changing bis-thiadiazole bearing bis-schiff bases affects their ability to inhibit TP. Through the oxidative cyclization of pyridine-based bis-thiosemicarbazone with iodine, a series of fourteen analogs of bis-thiadiazole-based bis-imines with pyridine moiety were developed. Newly synthesized scaffolds were assessed in vitro for their thymidine phosphorylase inhibitory potential and showed moderate to good inhibition profile. Eleven scaffolds such as 4a-4d,4f-4 h and 4j-4 m were discovered to be more effective than standard drug at inhibiting the thymidine phosphorylase enzyme with IC50 values of 1.16 ± 1.20, 1.77 ± 1.10, 2.48 ± 1.30, 12.54 ± 1.60, 14.63 ± 1.70, 15.53 ± 1.80, 17.47 ± 1.70, 18.98 ± 1.70, 19.53 ± 1.50, 22.73 ± 2.40 and 24.87 ± 2.80 respectively, while remaining three analogs such as 4n, 4i and 4ewere found to be more potent, but they were less potent than the standard drug. All analogs underwent SAR studies based on the pattern of substitutions around the aryl part of the bis-thiadiazole skeleton. The most active analogs in the synthesized series were then molecular docking study performed to investigate their interactions of active part of enzyme. The results showed that remarkable interactions were exhibited by these analogs with the targeted enzymes active sites. Furthermore, to confirm the structure of synthesized analogs by employing spectroscopic tools such as HREI-MS and NMR.

4.
Bioorg Med Chem Lett ; 57: 128520, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965467

RESUMEN

The sulfonamide-based thiadiazole derivatives (STDs) with different hydrophobic/hydrophilic substitutions were synthesized to investigate their potentials in carbonic anhydrase inhibition (CAI). The CAI activity of the STDs (4a-4h) and the mechanism of the inhibition kinetics were determined. STD 4f contained both methoxy and Cl groups at benzene ring in STD 4f showed the lowest IC50 value. The molecular docking study confirmed that STDs bind strongly with the active sites of the target protein PDBID 1V9E. With the help of Lineweaver-Burk plots, inhibition kinetics of PDBIR 1V9E protein with STDs were determined. Cytotoxicity was checked against human keratinocyte cell lines and the anticancer properties were determined against MCF-7 cell lines. The electrochemical method was used to investigate the binding study with DNA and CA enzymes. Anticancer studies showed that STDs have weak bonding ability to DNA and strong binding ability with CA. It is concluded that anticancer activity is through CAI rather than by DNA binding.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Sulfonamidas/farmacología , Tiadiazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Biocatálisis , Anhidrasa Carbónica II/química , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/metabolismo , Dominio Catalítico , Bovinos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Unión Proteica , Sulfonamidas/síntesis química , Sulfonamidas/metabolismo , Tiadiazoles/síntesis química , Tiadiazoles/metabolismo
5.
Mar Drugs ; 20(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36135775

RESUMEN

SARS-CoV-2 is the causative agent of the COVID-19 pandemic. This in silico study aimed to elucidate therapeutic efficacies against SARS-CoV-2 of phyco-compounds from the seaweed, Ulva fasciata. Twelve phyco-compounds were isolated and toxicity was analyzed by VEGA QSAR. Five compounds were found to be nonmutagenic, noncarcinogenic and nontoxic. Moreover, antiviral activity was evaluated by PASS. Binding affinities of five of these therapeutic compounds were predicted to possess probable biological activity. Fifteen SARS-CoV-2 target proteins were analyzed by the AutoDock Vina program for molecular docking binding energy analysis and the 6Y84 protein was determined to possess optimal binding affinities. The Desmond program from Schrödinger's suite was used to study high performance molecular dynamic simulation properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol-6Y84 for better drug evaluation. The ligand with 6Y84 had stronger binding affinities (-5.9 kcal/mol) over two standard drugs, Chloroquine (-5.6 kcal/mol) and Interferon α-2b (-3.8 kcal/mol). Swiss ADME calculated physicochemical/lipophilicity/water solubility/pharmacokinetic properties for 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, showing that this therapeutic agent may be effective against SARS-CoV-2.


Asunto(s)
Antivirales , SARS-CoV-2 , Ulva , Antivirales/química , Antivirales/farmacología , Cloroquina , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Humanos , Interferón-alfa , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , Terpenos/química , Terpenos/farmacología , Ulva/química , Tratamiento Farmacológico de COVID-19
6.
Molecules ; 27(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296515

RESUMEN

The disposal of dyes and organic matter into water bodies has become a significant source of pollution, posing health risks to humans worldwide. With rising water demands and dwindling supplies, these harmful compounds must be isolated from wastewater and kept out of the aquatic environment. In the research presented here, hydrothermal synthesis of manganese-doped zinc ferrites' (Mn-ZnFe2O4) nanoparticles (NPs) and their nanocomposites (NCs) with sulfur-doped graphitic carbon nitride (Mn-ZnFe2O4/S-g-C3N4) are described. The samples' morphological, structural, and bonding features were investigated using SEM, XRD, and FTIR techniques. A two-phase photocatalytic degradation study of (0.5, 1, 3, 5, 7, 9, and 11 wt.%) Mn-doped ZnFe2O4 NPs and Mn-ZnFe2O4/(10, 30, 50, 60, and 70 wt.%) S-g-C3N4 NCs against MB was carried out to find the photocatalyst with maximum efficiency. The 9% Mn-ZnFe2O4 NPs and Mn-ZnFe2O4/50% S-g-C3N4 NCs exhibited the best photocatalyst efficiency in phase one and phased two, respectively. The enhanced photocatalytic activity of the Mn-ZnFe2O4/50% S-g-C3N4 NCs could be attributed to synergistic interactions at the Mn-ZnFe2O4/50% S-g-C3N4 NCs interface that resulted in a more effective transfer and separation of photo-induced charges. Therefore, it is efficient, affordable, and ecologically secure to modify ZnFe2O4 by doping with Mn and homogenizing with S-g-C3N4. As a result, our current research suggests that the synthetic ternary hybrid Mn-ZnFe2O4/50% S-g-C3N4 NCs may be an effective photocatalytic system for degrading organic pollutants from wastewater.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Humanos , Catálisis , Manganeso , Colorantes , Azufre , Agua , Zinc
7.
Molecules ; 27(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36234994

RESUMEN

In this study, hybrid analogs of benzimidazole containing a thiazole moiety (1-17) were afforded and then tested for their ability to inhibit α-amylase and α-glucosidase when compared to acarbose as a standard drug. The recently available analogs showed a wide variety of inhibitory potentials that ranged between 1.31 ± 0.05 and 38.60 ± 0.70 µM (against α-amylase) and between 2.71 ± 0.10 and 42.31 ± 0.70 µM (against α-glucosidase) under the positive control of acarbose (IC50 = 10.30 ± 0.20 µM against α-amylase) (IC50 = 9.80 ± 0.20 µM against α-glucosidase). A structure-activity relationship (SAR) study was carried out for all analogs based on substitution patterns around both rings B and C respectively. It was concluded from the SAR study that analogs bearing either substituent(s) of smaller size (-F and Cl) or substituent(s) capable of forming hydrogen bonding (-OH) with the catalytic residues of targeted enzymes enhanced the inhibitory potentials. Therefore, analogs 2 (bearing meta-fluoro substitution), 3 (having para-fluoro substitution) and 4 (with ortho-fluoro group) showed enhanced potency when evaluated against standard acarbose drug with IC50 values of 4.10 ± 0.10, 1.30 ± 0.05 and 1.90 ± 0.10 (against α-amylase) and 5.60 ± 0.10, 2.70 ± 0.10 and 2.90 ± 0.10 µM (against α-glucosidase), correspondingly. On the other hand, analogs bearing substituent(s) of either a bulky nature (-Br) or that are incapable of forming hydrogen bonds (-CH3) were found to lower the inhibitory potentials. In order to investigate the binding sites for synthetic analogs and how they interact with the active areas of both targeted enzymes, molecular docking studies were also conducted on the potent analogs. The results showed that these analogs adopted many important interactions with the active areas of enzymes. The precise structure of the newly synthesized compounds was confirmed using several spectroscopic techniques as NMR and HREI-MS.


Asunto(s)
alfa-Amilasas , alfa-Glucosidasas , Acarbosa/farmacología , Bencimidazoles/farmacología , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiazoles/química , alfa-Glucosidasas/metabolismo
8.
Molecules ; 25(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947847

RESUMEN

This study's aim was to determine the pesticide residues in 10 different vegetable commodities from the Asir region, Saudi Arabia. We evaluated 211 vegetable samples, collected from supermarkets between March 2018 and September 2018, for a total of 80 different pesticides using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) after extraction with a multi-residue method (the QuEChERS method). The results were assessed according to the maximum residue limit (MRL) provided by European regulations for each pesticide in each commodity. All lettuce, cauliflower, and carrot samples were found to be free from pesticide residues. A total of 145 samples (68.7%) contained detectable pesticide residues at or lower than MRLs, and 44 samples (20.9%) contained detectable pesticide residues above MRLs. MRL values were exceeded most often in chili pepper (14 samples) and cucumber (10 samples). Methomyl, imidacloprid, metalaxyl, and cyproconazole were the most frequently detected pesticides. Based on the results of this study, we recommend that a government-supported program for the monitoring of pesticide residues in vegetables be established to promote consumers' health and achieve sustainable farming systems.


Asunto(s)
Análisis de los Alimentos , Contaminación de Alimentos/análisis , Residuos de Plaguicidas/análisis , Verduras/química , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Humanos , Espectrometría de Masas en Tándem
9.
Molecules ; 24(4)2019 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-30781449

RESUMEN

All-solid-state potentiometric sensors were prepared by using polyaniline (PANI) as the solid contact material. A film of PANI (thickness approximately being 0.25 µm) was deposited on a solid substrate (carbon screen printed platform). The PANI layer was subsequently coated with an ion-selective membrane (ISM) containing uniform-sized molecularly imprinted nanoparticles to produce a solid-contact ion-selective electrode (SC/ISE) for bispyribac herbicide (sensor I). In addition, aliquat 336 was also used as an ion exchanger in plasticized PVC membrane (sensor II). The proposed sensors revealed a remarkably improved sensitivity towards bispyribac ions with anionic slopes of -47.8 ± 1.1 (r² = 0.9995) and -44.4 ± 1.4 (r² = 0.9997) mV/decade over a linear range 1.0 × 10-2⁻8.6 × 10-6 M, 1.0 × 10-2⁻9.0 × 10-6 M and detection limits of 1.33 and 1.81 µg/mL for sensors I and II, respectively.Selectivity of both sensors is significantly high for different common pesticides and inorganic anions. The potential stability of the SC/ISEs was studied using chronopotentiometry. Electrochemical impedance spectrometry was used to understand the charge-transfer mechanisms of the different types of ion-selective electrodes studied. The impedance response of the electrodes was modelled by using equivalent electrical circuits. The sensors were used for a direct measurement of the bispyribac content in commercial herbicide formulations and soil samples collected from agricultural lands planted with rice and sprayed with bispyribac herbicide. The results agree fairly well with data obtained using HPLC method.


Asunto(s)
Técnicas Biosensibles , Contaminantes Ambientales/análisis , Herbicidas/análisis , Cloruro de Polivinilo/química , Espectroscopía Dieléctrica , Estructura Molecular , Nanopartículas/química , Nanopartículas/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier
11.
Int J Biol Macromol ; 255: 128234, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981287

RESUMEN

In this work, we developed five solid adsorbents such as calcium alginate beads (CG), Araucaria gum (AR) extracted from Araucaria heterophylla tree by chemical precipitation procedures, and Araucaria gum/calcium alginate composite beads (CR21, CR12, and CR11) prepared with different calcium alginate: Araucaria gum ratios (2:1, 1:2, and 1:1, respectively). The synthesized solid adsorbents were characterized utilizing TGA, XRD, nitrogen adsorption/desorption analysis, ATR-FTIR, pHPZC, swelling ratio, SEM, and TEM. Through the batch and column adsorption strategies, we evaluated the effect of adsorbent dose, pH, initial Pb (II) concentration, shaking time, bed height, and flow rate. The data of batch technique indicated that CR11 demonstrated a maximum batch adsorption capacity of 149.95 mg/g at 25 °C. Lead ions adsorption was well fitted by pseudo-second order and Elovich according to kinetic studies, in addition to Langmuir and Temkin models based on adsorption isotherm studies onto all the samples. Thermodynamic investigation showed that Pb (II) adsorption process is an endothermic, physical, and spontaneous process. The highest column adsorption capacity (161.1 mg/g) was achieved by CR11 at a bed height of 3 cm, flow rate of 10 mL/min, and initial Pb+2 concentration of 225 mg/L with 68 min as breakthrough time and 180 min as exhaustion time. Yoon-Nelson and Thomas models applied well the breakthrough curves of Pb (II) column adsorption. The maximum column adsorption capacity was decreased by 11.4 % after four column adsorption/desorption processes. Our results revealed that CR11 had an excellent adsorption capacity, fast kinetics, and good selectivity, emphasizing its potential for its applications in water treatment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Alginatos/química , Cinética , Plomo , Contaminantes Químicos del Agua/química , Iones , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
12.
Int J Biol Macromol ; 273(Pt 1): 132771, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823752

RESUMEN

In this study, biochar (BC) from Delonix regia pods peel and gum from Delonix regia seed (SG) were prepared, and also biochar/chitosan composite (BCS) and biochar/Delonix regia seed gum/chitosan composite (BCGS) were fabricated for the efficient adsorption of phenol. Various characterization tools such as SEM, TEM, ATR-FTIR, TGA, zeta potential, and textural investigation were studied to examine the features of the synthetized adsorbents, confirming their positive construction. It was fully studied how necessary factors, comprising pH, dose of adsorbent, contact shaking time, initial phenol concentration, and temperature influenced adsorption behavior. An obvious rise of the adsorption capacity from 60.16 to 165.20 mg/g was achieved by the modification of biochar with Delonix regia seed gum and chitosan under ideal circumstances of 2 h contact duration, pH 7, 15 °C, and a dose of 2.0 g/L. The phenol adsorption was well applied by Langmuir, Temkin, Dubinin-Radushkevich, and Sips isotherms, in addition to nonlinear pseudo-second-order kinetic model. Furthermore, the physisorption, endothermic, and spontaneous process was illustrated by thermodynamic investigation. Additionally, the fabricated adsorbents could be effectively used and regenerated without main losses of only 7.5, 4.6, and 4.0 % for BC, BCS, and BCGS, respectively in the removal percentage after seven cycles of application.


Asunto(s)
Carbón Orgánico , Quitosano , Fenol , Gomas de Plantas , Semillas , Quitosano/química , Carbón Orgánico/química , Adsorción , Semillas/química , Concentración de Iones de Hidrógeno , Cinética , Fenol/química , Gomas de Plantas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Temperatura , Purificación del Agua/métodos , Agua/química , Termodinámica
13.
Sci Rep ; 14(1): 9877, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684756

RESUMEN

Our study focused on the optical behavior, methylene blue (MB) dye degradation potential, antibacterial performance, and silver and trioxide mineral interaction with different bacterial species. We found that the addition of silver nanoparticles (Ag NPs) to neodymium oxide (Nd2O3) resulted in a significant response, with an enlargement of the inhibition zone for bacterial species such as Staphylococcus aureus and Escherichia coli. Specifically, the inhibition zone for S. aureus increased from 9.3 ± 0.5 mm for pure Nd2O3 to 16.7 ± 0.4 mm for the Ag/Nd2O3 nano-composite, while for E. coli, it increased from 8.8 ± 0.4 mm for Nd2O3 to 15.9 ± 0.3 mm for Ag/Nd2O3. Furthermore, the optical behavior of the composites showed a clear band-gap narrowing with the addition of Ag NPs, resulting in enhanced electronic localization. The direct and indirect transitions reduced from 6.7 to 6.1 eV and from 5.2 to 2.9 eV, respectively. Overall, these results suggest that the Ag/Nd2O3 nano-composite has potential applications in sensor industries and water treatment, thanks to its enhanced optical behavior, antibacterial performance, and efficient MB degradation capabilities. In terms of MB degradation, the Ag/Nd2O3 mixed system exhibited more efficient degradation compared to pure Nd2O3. After 150 min, the MB concentration in the mixed system decreased to almost half of its starting point, while pure Nd2O3 only reached 33%.


Asunto(s)
Antibacterianos , Escherichia coli , Nanopartículas del Metal , Azul de Metileno , Neodimio , Óxidos , Plata , Staphylococcus aureus , Azul de Metileno/química , Nanopartículas del Metal/química , Plata/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Neodimio/química , Óxidos/química , Adsorción
14.
Microsc Res Tech ; 87(8): 1965-1973, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38590279

RESUMEN

This study displays the effect of reduced graphene oxide (rGO) nanofiller and polystyrene-b-poly(ethylene-ran-butylene)-b-polystyrene-grafted maleic anhydride (SEBS-g-MA) on the optical, thermal, and mechanical features of expanded polystyrene (EPS). First, the thin films of pristine EPS and composites were prepared using solution cast method. The prepared films were subjected to fourier-transform infrared (FTIR), SEM, UV-visible spectrophotometer, thermogravimetric analysis/differential scanning calorimetry, and universal testing machine for structural, morphological, optical, thermal, and mechanical characterizations. Optical study revealed a significant increase in refractive index and absorption of composites than EPS. Indirect band-gap energy of EPS (~4.08 eV) was reduced to ~1.61 eV for rGO composite and ~ 2.23 eV for composite composed of rGO and SEBS-g-MA. Thermal analyses presented improvement in characterization temperatures such as T10, T50, Tp, Tm, and Tg of composites, which ultimately lead to the thermal stability of prepared composites than pristine EPS. Stress-strain curves displayed higher yield strength (46.62 MPa), Young's modulus (96.29 MPa), and strain at break (0.54%) for EPS+rGO composite than pure EPS having stress at break (1.01 MPa), Young's modulus (12.44 MPa), and strain at break (0.08%). Moreover, ductility with relatively higher strain at break (0.61%) and lower Young's modulus (79.32 MPa) and yield strength (32.98 MPa) was noticed in EPS+rGO+SEBS-g-MA composite than EPS+rGO composite film. Morphological analysis revealed a change in globular morphology of EPS and inhomogeneous dispersion of rGO in EPS to homogeneously dispersed rGO in EPS matrix without globules owing to the addition of SEBS-g-MA. The increase in compatibility of EPS and rGO due to SEBS-g-MA was also observed in FTIR spectra. RESEARCH HIGHLIGHTS: Here, the solution casting approach was used to create the composite film of EPS and rGO with globules of various sizes. After adding SEBS-g-MA, the shape altered to globular free films exhibiting homogenous dispersion of rGO in EPS matrix. An optical investigation showed that composite materials had a significantly higher refractive index and absorption than EPS. The optical, thermal, and mechanical investigations suggest that the produced composites may be a great substitute for virgin EPS, allowing for a wider range of applications.

15.
Sci Rep ; 14(1): 17893, 2024 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095369

RESUMEN

Diabetes mellitus (DM) is a rapidly prevailing disease throughout the world that poses boundless risk factors linked to several health problems. Vildagliptin is the standard dipeptidyl peptidase-4 (DPP-4) inhibitor type of medication that is used for the treatment of diabetes anti-hyperglycemic agent (anti-diabetic drug). The current study aimed to synthesize vildagliptin-loaded ZnO NPs for enhanced efficacy in terms of increased retention time minimizing side effects and increased hypoglycemic effects. Herein, Zinc Oxide (ZnO) nanoparticles (NPs) were constructed by precipitation method then the drug vildagliptin was loaded and drug loading efficiency was estimated by the HPLC method. X-ray diffraction analysis (XRD), UV-vis spectroscopy, FT-IR, scanning electron microscope (SEM), and EDX analysis were performed for the characterization of synthesized vildagliptin-loaded ZnO NPs. The UV-visible spectrum shows a distinct peak at 363 nm which confirms the creation of ZnO NPs and SEM showed mono-dispersed sphere-shaped NPs. EDX analysis shows the presence of desired elements along with the elemental composition. The physio-sorption studies, which used adsorption isotherms to assess adsorption capabilities, found that the Freundlich isotherm model explains the data very well and fits best. The maximum adsorption efficiency of 58.83% was obtained. Further, In vitro, anti-diabetic activity was evaluated by determining the α-amylase and DPP IV inhibition activity of the product formed. The formulation gave maximum inhibition of 82.06% and 94.73% of α-amylase and DPP IV respectively. While at 1000 µg/ml concentration with IC50 values of 24.11 µg/per ml and 42.94 µg/ml. The inhibition of α-amylase can be ascribed to the interactive effect of ZnO NPs and vildagliptin.


Asunto(s)
Hipoglucemiantes , Nanopartículas , Vildagliptina , Óxido de Zinc , Vildagliptina/química , Vildagliptina/farmacología , Óxido de Zinc/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Nanopartículas/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Difracción de Rayos X , Portadores de Fármacos/química , Espectroscopía Infrarroja por Transformada de Fourier , Nitrilos/química , Humanos
16.
RSC Adv ; 14(33): 24066-24081, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39091371

RESUMEN

Researchers are becoming more interested in novel barium-nitride-chloride (Ba3NCl3) hybrid perovskite solar cells (HPSCs) due to their remarkable semiconductor properties. An electron transport layer (ETL) built from TiO2 and a hole transport layer (HTL) made of CuI have been studied in Ba3NCl3-based single junction photovoltaic cells in a variety of variations. Through extensive numerical analysis using SCAPS-1D simulation software, we investigated elements such as layer thickness, defect density, doping concentration, interface defect density, carrier concentration, generation, recombination, temperature, series and shunt resistance, open circuit voltage (V OC), short circuit current (J SC), fill factor (FF), and power conversion efficiency (PCE). The study found that the HTL CuI design reached the highest PCE at 30.47% with a V OC of 1.0649 V, a J SC of 38.2609 mA cm-2, and an FF of 74.78%. These findings offer useful data and a practical plan for producing inexpensive, Ba3NCl3-based thin-film solar cells.

17.
ACS Omega ; 9(13): 15603-15614, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585118

RESUMEN

In the present work, 2-imino-1,3-thiazolines featuring highly fluorinated fragments were synthesized through a straightforward cyclization of diversely substituted thioureas with 2-bromo-1-(4-fluorophenyl)ethan-1-one. The target compounds were obtained in good yields, and structures were established by FTIR and 1H- and 13C NMR spectroscopic methods. The in vitro biological assay revealed that all the compounds significantly obstruct the α-glucosidase. Compound 6d (3-fluoro-N-(3-(2-fluorophenyl)-4-(4-fluorophenyl)thiazol-2(3H)-ylidene)benzamide) showed the highest antidiabetic potential with an IC50 value of 1.47 ± 0.05 µM. In addition, computational analysis revealed the binding energy of -11.1 kcal/mol for 6d which was lower than the positive standard, acarbose (-7.9 kcal/mol). Several intermolecular interactions between the active site residues and 6d highlight the significance of 2-imino-1,3-thiazoline core in attaining the potent efficacy and making these compounds a valuable pharmacophore in drug discovery.

18.
ACS Omega ; 8(28): 25378-25384, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483228

RESUMEN

Drugs that are illegal have long been a part of Egyptian society. The most widely misused form of narcotic is marijuana, also known as "bango", and other cannabis-related products like "hashish". The chemical profile of some available "hashish" in the local Egyptian illegal market and its possible country of origin are investigated using a gas chromatography-mass spectrometry technique in conjunction with a thermal separation probe (TSP/GC/MS). The TSP/GC/MS method reveals the presence of 23 different terpenes, of which caryophylla-4(12),8(13)-dien-5α-ol, isoaromadendrene epoxide, caryophyllene, and alloaromadendrene oxide-(1) are detected in high relative proportions. Ten cannabinoid components are also detected. These are cannabiorcochromene (CBC-C1), tetrahydrocannabivarin (THCV), delta-8-tetrahydrocannabinol (delta-8-THC), exo-THC, cannabichromene, cannabidiol (CBD), cannabielsoin (CBE), dronabinol (delta-9-THC), cannabigerol (CBG), and cannabinol (CBN). Phenotypic index (THC % + CBN %)/CBD %) is measured for the test samples to identify both the nature of the samples (fiber- or drug-type cannabis) and the country of origin.

19.
Sci Rep ; 13(1): 1631, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717602

RESUMEN

The zizphus seeds are considered as a biomaterial residues that has been used for removing of organic industrial waste such as 2-((10-octyl-9,10-dihydroanthracene-2-yl) methylene) malononitrile (PTZS-CN) dye from aqueous solutions utilizing graphene oxide-Ziziphus (GO-Ziziphus). A batch study explored the impacts of various experimental circumstances, including solution pH, initial dye concentration, temperature, and contact time. General order, nonlinear pseudo-first order and pseudo-second order, elvoich model and intraparticiple diffusion were utilized to analyze the kinetic data. The adsorption kinetics of dye onto GO-ziziphus adsorption was best mentioned by nonlinear pseudo-first order. Similarly, the intra-particle diffusion plots revealed one exponential line throughout the adsorption process. The Freundlich, Dubinin-Radushkevich, and Langmuir models were employed to examine isothermal data. It provided the best fit of the dye adsorption isothermal data onto GO-ziziphus Freundlich models. Besides, the calculated free energies showed that the adsorption progression was physical adsorption. Thermodynamic calculations revealed that dye adsorption onto GO-ziziphus was exothermic and spontaneous. The combined results indicated that GO-ziziphus powder might be used to treat dye-rich wastewater effectively.

20.
Front Bioeng Biotechnol ; 11: 1099999, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865031

RESUMEN

Plant Growth Promoting Rhizobacteria (PGPR) has gained immense importance in the last decade due to its in-depth study and the role of the rhizosphere as an ecological unit in the biosphere. A putative PGPR is considered PGPR only when it may have a positive impact on the plant after inoculation. From the various pieces of literature, it has been found that these bacteria improve the growth of plants and their products through their plant growth-promoting activities. A microbial consortium has a positive effect on plant growth-promoting (PGP) activities evident by the literature. In the natural ecosystem, rhizobacteria interact synergistically and antagonistically with each other in the form of a consortium, but in a natural consortium, there are various oscillating environmental conditions that affect the potential mechanism of the consortium. For the sustainable development of our ecological environment, it is our utmost necessity to maintain the stability of the rhizobacterial consortium in fluctuating environmental conditions. In the last decade, various studies have been conducted to design synthetic rhizobacterial consortium that helps to integrate cross-feeding over microbial strains and reveal their social interactions. In this review, the authors have emphasized covering all the studies on designing synthetic rhizobacterial consortiums, their strategies, mechanism, and their application in the field of environmental ecology and biotechnology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA