Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 228(Suppl 7): S594-S603, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37288605

RESUMEN

Ebola virus (EBOV) causes lethal disease in ferrets, whereas Marburg virus (MARV) does not. To investigate this difference, we first evaluated viral entry by infecting ferret spleen cells with vesicular stomatitis viruses pseudotyped with either MARV or EBOV glycoprotein (GP). Both viruses were capable of infecting ferret spleen cells, suggesting that lack of disease is not due to a block in MARV entry. Next, we evaluated replication kinetics of authentic MARV and EBOV in ferret cell lines and demonstrated that, unlike EBOV, MARV was only capable of low levels of replication. Finally, we inoculated ferrets with a recombinant EBOV expressing MARV GP in place of EBOV GP. Infection resulted in uniformly lethal disease within 7-9 days postinfection, while MARV-inoculated animals survived until study endpoint. Together these data suggest that the inability of MARV to cause disease in ferrets is not entirely linked to GP.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Enfermedad del Virus de Marburg , Marburgvirus , Animales , Hurones , Línea Celular , Glicoproteínas/genética
2.
Viruses ; 15(3)2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36992478

RESUMEN

Nigeria experiences annual outbreaks of Lassa fever (LF) with high case numbers. At least three clades of Lassa virus (LASV) have been documented in Nigeria, though recent outbreaks are most often associated with clade II or clade III viruses. Using a recently isolated clade III LASV from a case of LF in Nigeria in 2018, we developed and characterized a guinea pig adapted virus capable of causing lethal disease in commercially available Hartley guinea pigs. Uniform lethality was observed after four passages of the virus and was associated with only two dominant genomic changes. The adapted virus was highly virulent with a median lethal dose of 10 median tissue culture infectious doses. Disease was characterized by several hallmarks of LF in similar models including high fever, thrombocytopenia, coagulation disorders, and increased inflammatory immune mediators. High viral loads were noted in all solid organ specimens analyzed. Histological abnormalities were most striking in the lungs and livers of terminal animals and included interstitial inflammation, edema, and steatosis. Overall, this model represents a convenient small animal model for a clade III Nigeria LASV with which evaluation of specific prophylactic vaccines and medical countermeasures can be conducted.


Asunto(s)
Fiebre de Lassa , Vacunas Virales , Cobayas , Animales , Virus Lassa , Nigeria/epidemiología , Anticuerpos Antivirales
3.
NPJ Vaccines ; 8(1): 91, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301890

RESUMEN

Recombinant vesicular stomatitis viruses (rVSVs) engineered to express heterologous viral glycoproteins have proven to be remarkably effective vaccines. Indeed, rVSV-EBOV, which expresses the Ebola virus (EBOV) glycoprotein, recently received clinical approval in the United States and Europe for its ability to prevent EBOV disease. Analogous rVSV vaccines expressing glycoproteins of different human-pathogenic filoviruses have also demonstrated efficacy in pre-clinical evaluations, yet these vaccines have not progressed far beyond research laboratories. In the wake of the most recent outbreak of Sudan virus (SUDV) in Uganda, the need for proven countermeasures was made even more acute. Here we demonstrate that an rVSV-based vaccine expressing the SUDV glycoprotein (rVSV-SUDV) generates a potent humoral immune response that protects guinea pigs from SUDV disease and death. Although the cross-protection generated by rVSV vaccines for different filoviruses is thought to be limited, we wondered whether rVSV-EBOV might also provide protection against SUDV, which is closely related to EBOV. Surprisingly, nearly 60% of guinea pigs that were vaccinated with rVSV-EBOV and challenged with SUDV survived, suggesting that rVSV-EBOV offers limited protection against SUDV, at least in the guinea pig model. These results were confirmed by a back-challenge experiment in which animals that had been vaccinated with rVSV-EBOV and survived EBOV challenge were inoculated with SUDV and survived. Whether these data are applicable to efficacy in humans is unknown, and they should therefore be interpreted cautiously. Nevertheless, this study confirms the potency of the rVSV-SUDV vaccine and highlights the potential for rVSV-EBOV to elicit a cross-protective immune response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA