Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893520

RESUMEN

The objective of this study was to investigate the modification of glass surfaces by the synergistic combination of cold plasma and chemical surface modification techniques. Glass surface hydrophobicity was obtained as a result of various plasma and deposition operational conditions. The mechanisms governing the hydrophobization process were also studied. Glass plates were activated with plasma using different gases (oxygen and argon) at different treatment times, ranging from 30 to 1800 s. Then, the plasma-treated surfaces were exposed to hexamethyldisilazane vapors at different temperatures, i.e., 25, 60, and 100 °C. Complete characterization, including contact angle measurements, surface free energy calculations, 3D profilometry, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and scanning electron microscopy, was accomplished. It was found that the extent of the hydrophobicity effect depends on both the plasma pre-treatment and the specific conditions of the hexamethyldisilazane deposition process. Plasma activation led to the formation of active sites on the glass surface, which promoted the adsorption and reaction of hexamethyldisilazane species, thereby inducing surface chemical modification. Longer plasma pre-treatment resulted in stronger modification on the glass surface, resulting in changes in the surface roughness. The largest water contact angle of ≈100° was obtained for the surface activated by argon plasma for 1800 s and exposed to hexamethyldisilazane vapors at 25 °C. The changes in the surface properties were caused by the introduction of the hydrophobic trimethylsilyl groups onto the glass surface as well as roughness development.

2.
Front Chem ; 12: 1377144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666046

RESUMEN

Some drawbacks of aqueous electrolytes, such as freezing at low temperatures and extensive evaporation at high temperatures, restrict their industrial viability. This article introduces a stabilized neutral aqueous choline nitrate electrolyte with a 10 vol.% methanol additive that improves the temperature stability of the electrolyte via enhanced hydrogen bonding with the choline cation and water and maintains the good state of health of the supercapacitor cells under extreme operating conditions. The symmetric carbon/carbon supercapacitor in 5 mol/kg choline nitrate + 10 vol.% methanol (σ = 76 ms/cm at 25°C) exhibits 103 F/g at room temperature during galvanostatic charge/discharge up to 1.5 V, which decreases to 78 F/g at -40°C due to the suppressed Faradaic reactions occurring at the carbon electrode. However, under similar charge/discharge conditions, the capacitance increases to 112 F/g when the supercapacitor operates at 60°C. This capacitance increase at high temperatures is due to the Faradaic reactions related to enhanced hydrogen adsorption and desorption. The most remarkable aspect of the proposed supercapacitor is its ability to maintain capacitance and power performance during high voltage floating at 1.5 V at three tested temperatures (-40°C, 24°C, and 60°C).

3.
Nanomaterials (Basel) ; 14(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276742

RESUMEN

Inexpensive and efficient desalination is becoming increasingly important due to dwindling freshwater resources in view of climate change and population increase. Improving desalination techniques of brackish water using graphene-based materials has the possibility to revolutionize freshwater production and treatment. At the same time, graphene matter can be cheaply mass-produced from biowaste materials. In view of this, graphene material was obtained from a four-step production approach starting from rice husk (RH), including pre-carbonation, desilication, chemical activation, and exfoliation. The results showed that the produced samples contained a mixture of graphene layers and amorphous carbon. The activation ratio of 1:5 for carbonized RH and potassium hydroxide (KOH), respectively, provided higher graphene content than the 1:4 ratio of the same components, while the number of active layers remained unaffected. Further treatment with H2O2 did not affect the graphene content and exfoliation of the amorphous carbon. Preparation of the graphene material by the NIPS technique and vacuum filtration displayed different physicochemical characteristics of the obtained membranes. However, the membranes' main desalination function might be related more to adsorption rather than size exclusion. In any case, the desalination properties of the different graphene material types were tested on 35 g/L saltwater samples containing NaCl, KCl, MgCl2, CaSO4, and MgSO4. The produced graphene materials efficiently reduced the salt content by up to 95%. Especially for the major constituent NaCl, the removal efficiency was high.

4.
Heliyon ; 10(4): e26633, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38404854

RESUMEN

The present study serves experimental and theoretical analyses in developing a hybrid advanced structure as a photolysis, which is based on electrospun Graphene Oxide-titanium dioxide (GO-TiO2) nanofibers as an electron transfer material (ETMs) functionalized for perovskite solar cell (PVSCs) with GO. The prepared ETMs were utilized for the synthesis of mixed-cation (FAPbI3)0.8(MAPbBr3)0.2. The effect of GO on TiO2 and their chemical structure, electronic and morphological characteristic were investigated and discussed. The elaborated device, namely ITO/Bl-TiO2/3 wt% GO-TiO2/(FAPbI3)0.8(MAPbBr3)0.2/spiro-MeTAD/Pt, displayed 20.14% disposition and conversion solar energy with fill factor (FF) of 1.176%, short circuit current density (Jsc) of 20.56 mA/cm2 and open circuit voltage (VOC) 0.912 V. The obtained efficiency is higher than titanium oxide (18.42%) and other prepared GO-TiO2 composite nanofibers based ETMs. The developed materials and device would facilitate elaboration of advanced functional materials and devices for energy storage applications.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38248520

RESUMEN

Infant mortality in Kazakhstan is six times higher compared with the EU. There are several reasons for this, but a partial reason might be that less than 30% of Kazakhstan's population has access to safe water and sanitation and more than 57% uses polluted groundwater from wells that do not comply with international standards. For example, nitrate pollution in surface and groundwater continues to increase due to intensified agriculture and the discharge of untreated wastewater, causing concerns regarding environmental and human health. For this reason, drinking water samples were collected from the water supply distribution network in eight districts of Almaty, Kazakhstan, and water quality constituents, including nitrate, were analyzed. In several districts, the nitrate concentration was above the WHO and Kazakhstan's maximum permissible limits for drinking water. The spatial distribution of high nitrate concentration in drinking water was shown to be strongly correlated with areas that are supplied with groundwater, whereas areas with lower nitrate levels are supplied with surface water sources. Based on source identification, it was shown that groundwater is likely polluted by mainly domestic wastewater. The health risk for infants, children, teenagers, and adults was assessed based on chronic daily intake, and the hazard quotient (HQ) of nitrate intake from drinking water was determined. The non-carcinogenic risks increased in the following manner: adult < teenager < child < infant. For infants and children, the HQ was greater than the acceptable level and higher than that of other age groups, thus pointing to infants and children as the most vulnerable age group due to drinking water intake in the study area. Different water management options are suggested to improve the health situation of the population now drinking nitrate-polluted groundwater.


Asunto(s)
Agua Potable , Nitratos , Adulto , Niño , Lactante , Adolescente , Humanos , Kazajstán , Aguas Residuales , Medición de Riesgo , Calidad del Agua
6.
Polymers (Basel) ; 12(10)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086639

RESUMEN

In this study amphoteric cryogels were synthesized by the use of free-radical co-polymerization of acrylate-based precursors (methacrylic acid and 2-acrylamido-2-methyl-1-propansulfonic acid) with allylamine at different ratios. The physico-chemical characteristics of the cryogels were examined using SEM/EDX, FT-IR, XPS and zeta potential measurements. The cryogels were tested toward Cd2+ removal from aqueous solutions at various pH and initial concentrations. Equilibrium studies revealed a maximum sorption capacity in the range of 132-249 mg/g. Leaching experiments indicated the stability of Cd2+ in the cryogel structure. Based on kinetics, equilibrium and characterization results, possible removal mechanisms are proposed, indicating a combination of ion exchange and complexation of Cd2+ with the cryogels' surface functional groups. The cryogels were compared to commercially available adsorbents (zeolite Y and cation exchange resin) for the removal of Cd2+ from various water matrices (ultrapure water, tap water and river water) and the results showed that, under the experimental conditions used, the cryogels can be more effective adsorbents.

7.
Nanomaterials (Basel) ; 10(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882871

RESUMEN

This paper deals with the study of the optical properties of one-dimensional SrTiO3/PAN-based photocatalysts with the addition of metal oxide particles and the determination of their bandgaps. One-dimensional photocatalysts were obtained by the electrospinning method. Particles of metals such as iron, chromium, and copper were used as additives that are capable of improving the fibers' photocatalytic properties based on SrTiO3/PAN. The optimal ratios of the solutions for the electrospinning of fibers based on SrTiO3/PAN with the addition of metal oxide particles were determined. The transmission and reflection of composite photocatalysts with metal oxide particles were measured in a wide range of spectra, from the ultraviolet region (185 nm) to near-infrared radiation (3600 nm), to determine the values of their bandgaps. Thus, the introduction of metal oxide particles resulted in a decrease in the bandgaps of the obtained composite photocatalysts compared to the initial SrTiO3/PAN (3.57 eV), with the following values: -3.11 eV for SrTiO3/PAN/Fe2O3, -2.84 eV for SrTiO3/PAN/CuO, and -2.89 eV for SrTiO3/PAN/Cr2O3. The obtained composite photocatalysts were tested for the production of hydrogen by the splitting of water-methanol mixtures under UV irradiation, and the following rates of hydrogen evolution were determined: 344.67 µmol h-1 g-1 for SrTiO3/PAN/Fe2O3, 398.93 µmol h-1 g-1 for SrTiO3/PAN/Cr2O3, and 420.82 µmol h-1 g-1 for SrTiO3/PAN/CuO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA