Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474666

RESUMEN

Micro/nanomotors represent a burgeoning field of research featuring small devices capable of autonomous movement in liquid environments through catalytic reactions and/or external stimuli. This review delves into recent advancements in light-driven semiconductor-based micro/nanomotors (LDSM), focusing on optimized syntheses, enhanced motion mechanisms, and emerging applications in the environmental and biomedical domains. The survey commences with a theoretical introduction to micromotors and their propulsion mechanisms, followed by an exploration of commonly studied LDSM, emphasizing their advantages. Critical properties affecting propulsion, such as surface features, morphology, and size, are presented alongside discussions on external conditions related to light sources and intensity, which are crucial for optimizing the propulsion speed. Each property is accompanied by a theoretical background and conclusions drawn up to 2018. The review further investigates recent adaptations of LDSM, uncovering underlying mechanisms and associated benefits. A brief discussion is included on potential synergistic effects between different external conditions, aiming to enhance efficiency-a relatively underexplored topic. In conclusion, the review outlines emerging applications in biomedicine and environmental monitoring/remediation resulting from recent LDSM research, highlighting the growing significance of this field. The comprehensive exploration of LDSM advancements provides valuable insights for researchers and practitioners seeking to leverage these innovative micro/nanomotors in diverse applications.

2.
Molecules ; 27(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36500600

RESUMEN

The possibility of generating organically modified hollow TiO2 microspheres via a simple sol-gel synthesis was demonstrated for the first time in this work. A mixture of titania precursors, including an organically modified precursor, was used to obtain methyl-modified hollow TiO2 microspheres selective for bilirubin by the molecular imprinting technique (Methyl-HTM-MIM). Methyl-HTM-MIM were prepared by a sol-gel method using titanium (IV) isopropoxide (TTIP), and methyltitanium triisopropoxide (MTTIP) as precursors. Two ratios of titania precursors were tested (1/6 and 1/30 molMTTIP/molTTIP). With the characterization results obtained by the SEM and ATR-FTIR techniques, it was possible to establish that only the 1/30 molMTTIP/molTTIP ratio allowed for the preparation of hollow spheres with a reasonably homogeneous methylated-TiO2 shell. It was possible to obtain a certain degree of organization of the hybrid network, which increased with calcination temperatures. By adjusting isothermal adsorption models, imprinting parameters were determined, indicating that the new methylated microspheres presented greater selectivity for bilirubin than the totally inorganic hollow TiO2 microspheres. The effectiveness of the molecular imprinting technique was proven for the first time in an organically modified titania material, with imprinting factor values greater than 1.4, corresponding to a significant increase in the maximum adsorption capacity of the template represented by the molecularly imprinted microspheres. In summary, the results obtained with the new methyl-HTM-MIM open the possibility of exploring the application of these microspheres for selective sorption (separation or sensing, for example) or perhaps even for selective photocatalysis, particularly for the degradation of organic compounds.


Asunto(s)
Impresión Molecular , Impresión Molecular/métodos , Microesferas , Titanio , Adsorción
3.
J Mol Recognit ; 31(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28156029

RESUMEN

Imprinting chondroitin sulfate (CS)/silica composites with Pb(II) and Cu(II) cations was explored with CS of bovine and different fish species origin. The process was based on the assumption that particular arrangements of the linear CS chains in aqueous solution, induced so as to accommodate cross complexation with the cations, would be embodied into a tridimensional matrix created through an organoalkoxysilane sol-gel scheme. The presence of Cu(II) in the synthesis of the composites did not result in the production of significantly stronger Cu(II)-oriented binding arrangements, and therefore, the imprinting was not successful. Inversely, for Pb(II), the materials obtained exhibited a "memory" effect for the Pb(II) ions, expressed in the observation of stronger (13%-44%) binding as compared to the nonimprinted counterparts, and increased selectivity (1.5-2 folds) against Cd(II). The imprinting features observed were dependent on the CS source. However, it was not possible to identify, among a set of their properties (carboxylate and sulfate abundance, percent of disulfated units, 4S/6S ratio, and molecular weight), any that correlated directly with the observed imprinting features. The augmented selectivity provided by the cation-imprinting process may be advantageous in areas such as analytical separation, remediation, purification, sensing, and others, particularly in those cases where a certain cation is of special interest within a mixture of them.


Asunto(s)
Sulfatos de Condroitina/química , Plomo/química , Impresión Molecular , Animales , Cationes/química , Bovinos , Peces
4.
Anal Chem ; 78(6): 2071-4, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16536449

RESUMEN

Solid-phase microextraction commercial fibers present a few drawbacks such as relatively low recommended operating temperature, instability and swelling in organic solvents, breakage of the fiber, stripping of coatings, and bending of the needle. Some of these problems have been obviated by covalent bonding of the polymer phase to the fused-silica substrate by sol-gel, but the easy breakage of the fiber remains a problem. In the present work, the known occurrence of titanol groups at the surface of titanium wire was exploited to produce sol-gel fibers supported on this unbreakable substrate. Scanning electron microscopy analysis revealed the film formation on titanium wire surface while temperature and solvent stability as well as durability tests showed that the sol-gel film was tightly attached to the substrate, thus suggesting covalent bonding. The use of this type of fiber is currently generalized in our laboratory without any breakage or stripping out incidents up to the moment.


Asunto(s)
Microextracción en Fase Sólida/métodos , Titanio/química , Geles/química , Estructura Molecular , Polímeros/química , Sensibilidad y Especificidad , Dióxido de Silicio/química , Propiedades de Superficie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA