Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Immunology ; 168(2): 217-232, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35574724

RESUMEN

Essentially all cells are covered with a dense coat of different glycan structures/sugar chains, giving rise to the so-called glycocalyx. Changes in cellular glycosylation are a hallmark of cancer, affecting most of the pathophysiological processes associated with malignant transformation, including tumour immune responses. Glycans are chief macromolecules that define T-cell development, differentiation, fate, activation and signalling. Thus, the diversity of glycans expressed at the surface of T cells constitutes a fundamental molecular interface with the microenvironment by regulating the bilateral interactions between T-cells and cancer cells, fine-tuning the anti-tumour immune response. In this review, we will introduce the power of glycans as orchestrators of T-cell-mediated immune response in physiological conditions and in cancer. We discuss how glycans modulate the glyco-metabolic landscape in the tumour microenvironment, and whether glycans can synergize with immunotherapy as a way of rewiring T-cell effector functions against cancer cells.


Asunto(s)
Neoplasias , Humanos , Polisacáridos , Linfocitos T , Glicosilación , Inmunidad , Microambiente Tumoral
2.
Gastroenterology ; 163(3): 659-670, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35623454

RESUMEN

BACKGROUND & AIMS: Anti-granulocyte macrophage-colony stimulating factor autoantibodies (aGMAbs) are detected in patients with ileal Crohn's disease (CD). Their induction and mode of action during or before disease are not well understood. We aimed to investigate the underlying mechanisms associated with aGMAb induction, from functional orientation to recognized epitopes, for their impact on intestinal immune homeostasis and use as a predictive biomarker for complicated CD. METHODS: We characterized using enzyme-linked immunosorbent assay naturally occurring aGMAbs in longitudinal serum samples from patients archived before the diagnosis of CD (n = 220) as well as from 400 healthy individuals (matched controls) as part of the US Defense Medical Surveillance System. We used biochemical, cellular, and transcriptional analysis to uncover a mechanism that governs the impaired immune balance in CD mucosa after diagnosis. RESULTS: Neutralizing aGMAbs were found to be specific for post-translational glycosylation on granulocyte macrophage-colony stimulating factor (GM-CSF), detectable years before diagnosis, and associated with complicated CD at presentation. Glycosylation of GM-CSF was altered in patients with CD, and aGMAb affected myeloid homeostasis and promoted group 1 innate lymphoid cells. Perturbations in immune homeostasis preceded the diagnosis in the serum of patients with CD presenting with aGMAb and were detectable in the noninflamed CD mucosa. CONCLUSIONS: Anti-GMAbs predict the diagnosis of complicated CD long before the diagnosis of disease, recognize uniquely glycosylated epitopes, and impair myeloid cell and innate lymphoid cell balance associated with altered intestinal immune homeostasis.


Asunto(s)
Enfermedad de Crohn , Enfermedades del Íleon , Autoanticuerpos , Enfermedad de Crohn/complicaciones , Epítopos , Glicosilación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Humanos , Enfermedades del Íleon/complicaciones , Inmunidad Innata , Linfocitos , Macrófagos
3.
Ecotoxicology ; 23(2): 107-21, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24323250

RESUMEN

Microcystin-leucine and arginine (microcystin-LR) is a cyanotoxin produced by cyanobacteria like Microcystis aeruginosa, and it's considered a threat to water quality, agriculture, and human health. Rice (Oryza sativa) is a plant of great importance in human food consumption and economy, with extensive use around the world. It is therefore important to assess the possible effects of using water contaminated with microcystin-LR to irrigate rice crops, in order to ensure a safe, high quality product to consumers. In this study, 12 and 20-day-old plants were exposed during 2 or 7 days to a M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations, 0.26-78 µg/L. Fresh and dry weight of roots and leaves, chlorophyll fluorescence, glutathione S-transferase and glutathione peroxidase activities, and protein identification by mass spectrometry through two-dimensional gel electrophoresis from root and leaf tissues, were evaluated in order to gauge the plant's physiological condition and biochemical response after toxin exposure. Results obtained from plant biomass, chlorophyll fluorescence, and enzyme activity assays showed no significant differences between control and treatment groups. However, proteomics data indicates that plants respond to M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations by changing their metabolism, responding differently to different toxin concentrations. Biological processes most affected were related to protein folding and stress response, protein biosynthesis, cell signalling and gene expression regulation, and energy and carbohydrate metabolism which may denote a toxic effect induced by M. aeruginosa extract and microcystin-LR. The implications of the metabolic alterations in plant physiology and growth require further elucidation.


Asunto(s)
Microcistinas/análisis , Oryza/efectos de los fármacos , Plantones/efectos de los fármacos , Electroforesis en Gel Bidimensional , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Toxinas Marinas , Espectrometría de Masas , Microcystis/química , Oryza/metabolismo , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Proteómica , Plantones/metabolismo
4.
FEBS Lett ; 596(12): 1485-1502, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35383918

RESUMEN

Glycans are carbohydrates that are made by all organisms and covalently conjugated to other biomolecules. Glycans cover the surface of both human cells and pathogens and are fundamental to defining the identity of a cell or an organism, thereby contributing to discriminating self from nonself. As such, glycans are a class of 'Self-Associated Molecular Patterns' that can fine-tune host inflammatory processes. In fact, glycans can be sensed and recognized by a variety of glycan-binding proteins (GBP) expressed by immune cells, such as galectins, siglecs, and C-type lectins, which recognize changes in the cellular glycosylation, instructing both pro-inflammatory and anti-inflammatory responses. In this review, we introduce glycans as cell-identification structures, discussing how glycans modulate host-pathogen interactions and how they can fine-tune inflammatory processes associated with infection, inflammation and autoimmunity. Finally, from the clinical standpoint, we discuss how glycoscience research can benefit life sciences and clinical medicine by providing a source of valuable biomarkers and therapeutic targets for immunity.


Asunto(s)
Tolerancia Inmunológica , Polisacáridos , Carbohidratos , Galectinas/metabolismo , Glicosilación , Humanos , Tolerancia Inmunológica/inmunología , Polisacáridos/metabolismo
5.
Nat Genet ; 54(12): 1983-1993, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36471068

RESUMEN

Determining the functional role of thousands of genetic sequence variants (mutations) associated with genetic diseases is a major challenge. Here we present clustered regularly interspaced short palindromic repeat (CRISPR)-SelectTIME, CRISPR-SelectSPACE and CRISPR-SelectSTATE, a set of flexible knock-in assays that introduce a genetic variant in a cell population and track its absolute frequencies relative to an internal, neutral control mutation as a function of time, space or a cell state measurable by flow cytometry. Phenotypically, CRISPR-Select can thereby determine, for example, pathogenicity, drug responsiveness/resistance or in vivo tumor promotion by a specific variant. Mechanistically, CRISPR-Select can dissect how the variant elicits the phenotype by causally linking the variant to motility/invasiveness or any cell state or biochemical process with a flow cytometry marker. The method is applicable to organoids, nontransformed or cancer cell lines. It is accurate, quantitative, fast and simple and works in single-well or 96-well higher throughput format. CRISPR-Select provides a versatile functional variant assay for research, diagnostics and drug development for genetic disorders.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
6.
Inflamm Bowel Dis ; 28(6): 947-962, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34849933

RESUMEN

Colitis-associated cancer is a major complication of inflammatory bowel disease remaining an important clinical challenge in terms of diagnosis, screening, and prognosis. Inflammation is a driving factor both in inflammatory bowel disease and cancer, but the mechanism underlying the transition from colon inflammation to cancer remains to be defined. Dysregulation of mucosal glycosylation has been described as a key regulatory mechanism associated both with colon inflammation and colorectal cancer development. In this review, we discuss the major molecular mechanisms of colitis-associated cancer pathogenesis, highlighting the role of glycans expressed at gut epithelial cells, at lamina propria T cells, and in serum proteins in the regulation of intestinal inflammation and its progression to colon cancer, further discussing its potential clinical and therapeutic applications.


Colitis-associated cancer (CAC) is a major complication of inflammatory bowel disease and the molecular mechanisms underlying CAC progression are still elusive. Protein glycosylation holds a great promise for improving the understanding of CAC immunopathogenesis, opening new avenues for clinical and therapeutic interventions.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Colitis/patología , Neoplasias Colorrectales/patología , Sulfato de Dextran , Glicosilación , Humanos , Inflamación/patología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología
7.
Mar Environ Res ; 110: 152-61, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26364681

RESUMEN

Glutathione transferases (GSTs) are key for xenobiotic detoxification at the molecular level across phyla. These enzymes are therefore likely to be part of the defence mechanisms used by marine organisms, such as mussels, that thrive in highly polluted environments. Taking this hypothesis into account, we used proteomics to characterize the profile of GSTs from the gills of marine mussel Mytilus galloprovincialis in order to discriminate natural mussel populations exposed to different levels of pollution. Samples were collected between Cabo Home (Spain) and Matosinhos (Portugal) covering a north-south transect of approximately 122 Km of the Atlantic Ocean along the Western Coast of the Iberian Peninsula. GSTs from mussel gills were extracted and purified by affinity chromatography with glutathione as the binding substrate to the solid medium. We studied the abundance of GST isoforms by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight mass spectrometry and assessed total activity. Eleven putative individual GSTs from classes Mu, Pi and Sigma were identified by proteomics. Few variations were observed in total GST activity of post-mitochondrial samples between sampling sites, with animals from Matosinhos (polluted site) showing highest GST activity and Cabo Home (clean site) showing lowest. This contrasts with the increased number of differences in the individual GST isoforms. Each mussel population showed unique GST proteomic profiles. Based on the results we conclude that proteomics surpasses the conventional GST enzymatic activity method to discriminate natural mussel populations and has potential application in environmental monitoring. It is reasonable to suggest that the GST proteomic profiles observed may reflect differences in contamination levels.


Asunto(s)
Monitoreo del Ambiente/métodos , Glutatión Transferasa/genética , Mytilus/genética , Proteómica/métodos , Calidad del Agua , Secuencia de Aminoácidos , Animales , Branquias/química , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Mytilus/metabolismo , Portugal , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , España , Contaminación Química del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA