Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Biol ; 22(3): e3002567, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470934

RESUMEN

PEX5, the peroxisomal protein shuttling receptor, binds newly synthesized proteins in the cytosol and transports them to the organelle. During its stay at the peroxisomal protein translocon, PEX5 is monoubiquitinated at its cysteine 11 residue, a mandatory modification for its subsequent ATP-dependent extraction back into the cytosol. The reason why a cysteine and not a lysine residue is the ubiquitin acceptor is unknown. Using an established rat liver-based cell-free in vitro system, we found that, in contrast to wild-type PEX5, a PEX5 protein possessing a lysine at position 11 is polyubiquitinated at the peroxisomal membrane, a modification that negatively interferes with the extraction process. Wild-type PEX5 cannot retain a polyubiquitin chain because ubiquitination at cysteine 11 is a reversible reaction, with the E2-mediated deubiquitination step presenting faster kinetics than PEX5 polyubiquitination. We propose that the reversible nonconventional ubiquitination of PEX5 ensures that neither the peroxisomal protein translocon becomes obstructed with polyubiquitinated PEX5 nor is PEX5 targeted for proteasomal degradation.


Asunto(s)
Cisteína , Lisina , Animales , Ratas , Proteínas Portadoras/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Transporte de Proteínas , Ubiquitinación
2.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982212

RESUMEN

Photobacterium damselae subsp. piscicida (Phdp) is a Gram-negative fish pathogen with worldwide distribution and broad host specificity that causes heavy economic losses in aquaculture. Although Phdp was first identified more than 50 years ago, its pathogenicity mechanisms are not completely understood. In this work, we report that Phdp secretes large amounts of outer membrane vesicles (OMVs) when cultured in vitro and during in vivo infection. These OMVs were morphologically characterized and the most abundant vesicle-associated proteins were identified. We also demonstrate that Phdp OMVs protect Phdp cells from the bactericidal activity of fish antimicrobial peptides, suggesting that secretion of OMVs is part of the strategy used by Phdp to evade host defense mechanisms. Importantly, the vaccination of sea bass (Dicentrarchus labrax) with adjuvant-free crude OMVs induced the production of anti-Phdp antibodies and resulted in partial protection against Phdp infection. These findings reveal new aspects of Phdp biology and may provide a basis for developing new vaccines against this pathogen.


Asunto(s)
Lubina , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Vacunas , Animales , Photobacterium , Virulencia , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria
3.
Hum Genet ; 140(4): 649-666, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33389129

RESUMEN

Peroxisomes, single-membrane intracellular organelles, play an important role in various metabolic pathways. The translocation of proteins from the cytosol to peroxisomes depends on peroxisome import receptor proteins and defects in peroxisome transport result in a wide spectrum of peroxisomal disorders. Here, we report a large consanguineous family with autosomal recessive congenital cataracts and developmental defects. Genome-wide linkage analysis localized the critical interval to chromosome 12p with a maximum two-point LOD score of 4.2 (θ = 0). Next-generation exome sequencing identified a novel homozygous missense variant (c.653 T > C; p.F218S) in peroxisomal biogenesis factor 5 (PEX5), a peroxisome import receptor protein. This missense mutation was confirmed by bidirectional Sanger sequencing. It segregated with the disease phenotype in the family and was absent in ethnically matched control chromosomes. The lens-specific knockout mice of Pex5 recapitulated the cataractous phenotype. In vitro import assays revealed a normal capacity of the mutant PEX5 to enter the peroxisomal Docking/Translocation Module (DTM) in the presence of peroxisome targeting signal 1 (PTS1) cargo protein, be monoubiquitinated and exported back into the cytosol. Importantly, the mutant PEX5 protein was unable to form a stable trimeric complex with peroxisomal biogenesis factor 7 (PEX7) and a peroxisome targeting signal 2 (PTS2) cargo protein and, therefore, failed to promote the import of PTS2 cargo proteins into peroxisomes. In conclusion, we report a novel missense mutation in PEX5 responsible for the defective import of PTS2 cargo proteins into peroxisomes resulting in congenital cataracts and developmental defects.


Asunto(s)
Catarata/genética , Mutación Missense , Señales de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Peroxisomas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico Activo , Catarata/congénito , Catarata/metabolismo , Cromosomas Humanos Par 12 , Consanguinidad , Femenino , Ligamiento Genético , Humanos , Cristalino/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Proteína Sequestosoma-1/metabolismo , Secuenciación del Exoma
4.
An Acad Bras Cienc ; 92(4): e20200435, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33295580

RESUMEN

Osteoporosis is a metabolic disorder characterized by a loss of bone mass and structure and increasing the risk of fragility fractures, mostly among postmenopausal women. Sheep is a recognized large animal model for osteoporosis research. An experimental group of ewes (3-4 years old) was subjected to ovariectomy (OVX) and weekly glucocorticoid (GC) application for 24 weeks and compared with a sham control group. Blood and bone marrow parameters were analyzed before and 24 weeks after OVX and GC administration. Osteopenia was confirmed through micro-computed tomography and histomorphometric analysis of L4 vertebra in the study end. A statistically significant increase was observed in mean corpuscular volume, mean cell hemoglobin and monocytes and a decrease in red blood count and eosinophils (p<0.05). Alkaline phosphatase (ALP), gamma-glutamyl transpeptidase, magnesium and α1-globulin increased, and creatinine, albumin, sodium and estradiol decreased (p<0.05). A slight decrease of bone formation markers (bone ALP and osteocalcin) and an increase of bone resorption markers (C-terminal telopeptides of collagen type 1 and tartrate-resistant acid phosphatase) were observed, but without statistical significance. This study aims to contribute to better knowledge of sheep as a model for osteoporosis research and the consequences that a performed induction protocol may impose on organic metabolism.


Asunto(s)
Hematología , Osteoporosis , Animales , Médula Ósea , Remodelación Ósea , Preescolar , Femenino , Glucocorticoides , Humanos , Ovariectomía , Investigación , Ovinos , Microtomografía por Rayos X
5.
J Biol Chem ; 293(29): 11553-11563, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29884772

RESUMEN

PEX1 and PEX6 are two members of the ATPases associated with diverse cellular activities (AAA) family and the core components of the receptor export module of the peroxisomal matrix protein import machinery. Their role is to extract monoubiquitinated PEX5, the peroxisomal protein-shuttling receptor, from the peroxisomal membrane docking/translocation module (DTM), so that a new cycle of protein transportation can start. Recent data have shown that PEX1 and PEX6 form a heterohexameric complex that unfolds substrates by processive threading. However, whether the natural substrate of the PEX1-PEX6 complex is monoubiquitinated PEX5 (Ub-PEX5) itself or some Ub-PEX5-interacting component(s) of the DTM remains unknown. In this work, we used an established cell-free in vitro system coupled with photoaffinity cross-linking and protein PEGylation assays to address this problem. We provide evidence suggesting that DTM-embedded Ub-PEX5 interacts directly with both PEX1 and PEX6 through its ubiquitin moiety and that the PEX5 polypeptide chain is globally unfolded during the ATP-dependent extraction event. These findings strongly suggest that DTM-embedded Ub-PEX5 is a bona fide substrate of the PEX1-PEX6 complex.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Citosol/metabolismo , Proteínas de la Membrana/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Mapas de Interacción de Proteínas , Humanos , Modelos Moleculares , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Peroxisomas/metabolismo , Transporte de Proteínas , Desplegamiento Proteico , Ubiquitina/metabolismo , Ubiquitinación
6.
Bioessays ; 39(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28787099

RESUMEN

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 - the "plunger" - pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex - the "barrel" - into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the "barrel" is an ATP-independent process, whereas extraction of the receptor back into the cytosol requires its monoubiquitination and the action of ATP-dependent mechanoenzymes. Here, we review the main data behind this model.


Asunto(s)
Peroxisomas/metabolismo , Transporte de Proteínas/fisiología , Animales , Humanos , Receptor de la Señal 2 de Direccionamiento al Peroxisoma/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Transducción de Señal/fisiología , Ubiquitinación/fisiología
7.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652724

RESUMEN

In contrast to many protein translocases that use ATP or GTP hydrolysis as the driving force to transport proteins across biological membranes, the peroxisomal matrix protein import machinery relies on a regulated self-assembly mechanism for this purpose and uses ATP hydrolysis only to reset its components. The ATP-dependent protein complex in charge of resetting this machinery-the Receptor Export Module (REM)-comprises two members of the "ATPases Associated with diverse cellular Activities" (AAA+) family, PEX1 and PEX6, and a membrane protein that anchors the ATPases to the organelle membrane. In recent years, a large amount of data on the structure/function of the REM complex has become available. Here, we discuss the main findings and their mechanistic implications.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Peroxisomas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Animales , Humanos , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/química , Transporte de Proteínas
8.
J Biol Chem ; 292(37): 15287-15300, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28765278

RESUMEN

A remarkable property of the machinery for import of peroxisomal matrix proteins is that it can accept already folded proteins as substrates. This import involves binding of newly synthesized proteins by cytosolic peroxisomal biogenesis factor 5 (PEX5) followed by insertion of the PEX5-cargo complex into the peroxisomal membrane at the docking/translocation module (DTM). However, how these processes occur remains largely unknown. Here, we used truncated PEX5 molecules to probe the DTM architecture. We found that the DTM can accommodate a larger number of truncated PEX5 molecules comprising amino acid residues 1-197 than full-length PEX5 molecules. A shorter PEX5 version (PEX5(1-125)) still interacted correctly with the DTM; however, this species was largely accessible to exogenously added proteinase K, suggesting that this protease can access the DTM occupied by a small PEX5 protein. Interestingly, the PEX5(1-125)-DTM interaction was inhibited by a polypeptide comprising PEX5 residues 138-639. Apparently, the DTM can recruit soluble PEX5 through interactions with different PEX5 domains, suggesting that the PEX5-DTM interactions are to some degree fuzzy. Finally, we found that the interaction between PEX5 and PEX14, a major DTM component, is stable at pH 11.5. Thus, there is no reason to assume that the hitherto intriguing resistance of DTM-bound PEX5 to alkaline extraction reflects its direct contact with the peroxisomal lipid bilayer. Collectively, these results suggest that the DTM is best described as a large cavity-forming protein assembly into which cytosolic PEX5 can enter to release its cargo.


Asunto(s)
Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Transporte Biológico , Endopeptidasa K/metabolismo , Eliminación de Gen , Humanos , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Mutación , Mutación Missense , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Solubilidad
10.
J Exp Bot ; 69(19): 4633-4649, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30053161

RESUMEN

Post-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway. This study reports a thorough comparative genomics and phylogenetic characterization of plant ULPs, revealing the presence of one ULP1-like and three ULP2-like SUMO protease subgroups within plant genomes. As representatives of an under-studied subgroup, Arabidopsis SPF1 and SPF2 were subjected to functional characterization. Loss-of-function mutants implicated both proteins with vegetative growth, flowering time, and seed size and yield. Mutants constitutively accumulated SUMO conjugates, and yeast complementation assays associated these proteins with the function of ScUlp2 but not ScUlp1. Fluorescence imaging placed both proteins in the plant cell nucleoplasm. Transcriptomics analysis indicated strong regulatory involvement in secondary metabolism, cell wall remodelling, and nitrate assimilation. Furthermore, developmental defects of the spf1-1 spf2-2 (spf1/2) double-mutant opposed those of the major E3 ligase siz1 mutant and, most significantly, developmental and transcriptomic characterization of the siz1 spf1/2 triple-mutant placed SIZ1 as epistatic to SPF1 and SPF2.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cisteína Endopeptidasas/genética , Ligasas/genética , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Ligasas/metabolismo , Filogenia , Alineación de Secuencia , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo
11.
Biochim Biophys Acta ; 1863(5): 814-20, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26408939

RESUMEN

In the field of intracellular protein sorting, peroxisomes are most famous by their capacity to import oligomeric proteins. The data supporting this remarkable property are abundant and, understandably, have inspired a variety of hypothetical models on how newly synthesized (cytosolic) proteins reach the peroxisome matrix. However, there is also accumulating evidence suggesting that many peroxisomal oligomeric proteins actually arrive at the peroxisome still as monomers. In support of this idea, recent data suggest that PEX5, the shuttling receptor for peroxisomal matrix proteins, is also a chaperone/holdase, binding newly synthesized peroxisomal proteins in the cytosol and blocking their oligomerization. Here we review the data behind these two different perspectives and discuss their mechanistic implications on this protein sorting pathway.


Asunto(s)
Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Células Eucariotas/química , Células Eucariotas/metabolismo , Regulación de la Expresión Génica , Humanos , Receptor de la Señal 2 de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/química , Plantas/química , Plantas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Tiempo
12.
Biochim Biophys Acta ; 1863(1): 139-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26522917

RESUMEN

Protein modification with the small ubiquitin-like modifier (SUMO) is a reversible process regulating many central biological pathways. The reversibility of SUMOylation is ensured by SUMO proteases many of which belong to the sentrin/SUMO-specific protease (SENP) family. In recent years, many advances have been made in allocating SENPs to specific biological pathways. However, due to difficulties in obtaining recombinant full-length active SENPs for thorough enzymatic characterization, our knowledge on these proteases is still limited. In this work, we used in vitro synthesized full-length human SENPs to perform a side-by-side comparison of their activities and substrate specificities. ProSUMO1/2/3, RanGAP1-SUMO1/2/3 and polySUMO2/3 chains were used as substrates in these analyses. We found that SENP1 is by far the most versatile and active SENP whereas SENP3 stands out as the least active of these enzymes. Finally, a comparison between the activities of full-length SENPs and their catalytic domains suggests that in some cases their non-catalytic regions influence their activity.


Asunto(s)
Endopeptidasas/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química , Catálisis , Endopeptidasas/genética , Endopeptidasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Especificidad por Sustrato/fisiología
13.
BMC Vet Res ; 13(1): 239, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28810860

RESUMEN

BACKGROUND: Currently, the best resources for assessment of bone tissue using imaging techniques are expensive and available in few medical facilities, thus serum or urinary bone turnover biomarkers could be useful as early indicators of prognosis. However, there is a wide range of variability in bone turnover markers due to several factors, such as different ages and metabolic stages, thus it is important to have as much data published on the subject as possible. The aim of this study was therefore to generate a reference range for alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) and validate the already published data. RESULTS: Serum alkaline phosphatase decreased with age, with statistical difference between the 1 month old and the other groups and between the over 8 years and the 6 months old groups. There was also a statistical difference in the ALP levels between the 3 to 5 years old gestation and lactation groups. For serum tartrate-resistant acid phosphatase, there was a statistical difference mainly between the 1 month old and the 6 months old, 6-8 years old, and above 8 years old groups. CONCLUSIONS: The results obtained could represent a useful tool for future studies using sheep as an animal model for orthopedic research. The different groups presented a wide variation of serum ALP and TRAP levels, however, these variations are entirely explained by known physiology. Therefore, this detailed study confirms the prediction that unexplained changes in these bone turnover markers do not occur during the lifespan of sheep.


Asunto(s)
Fosfatasa Alcalina/sangre , Biomarcadores/sangre , Remodelación Ósea/fisiología , Fosfatasa Ácida Tartratorresistente/sangre , Envejecimiento , Animales , Femenino , Lactancia/metabolismo , Embarazo , Ovinos
14.
An Acad Bras Cienc ; 89(1): 231-245, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28273244

RESUMEN

Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.


Asunto(s)
Remodelación Ósea/fisiología , Cabras/fisiología , Modelos Animales , Ovinos/fisiología , Animales , Biomarcadores/sangre , Biomarcadores/orina , Resorción Ósea/metabolismo , Resorción Ósea/fisiopatología , Curación de Fractura/fisiología
15.
Traffic ; 15(1): 94-103, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24118911

RESUMEN

Peroxisome maintenance depends on the import of nuclear-encoded proteins from the cytosol. The vast majority of these proteins is destined for the peroxisomal lumen and contains a C-terminal peroxisomal targeting signal, called PTS1. This targeting signal is recognized in the cytosol by the receptor PEX5. After docking at the peroxisomal membrane and release of the cargo into the organelle matrix, PEX5 is recycled to the cytosol through a process requiring monoubiquitination of an N-terminal, cytosolically exposed cysteine residue (Cys11 in the human protein). At present, the reason why a cysteine, and not a lysine residue, is the target of ubiquitination remains unclear. Here, we provide evidence that PTS1 protein import into human fibroblasts is a redox-sensitive process. We also demonstrate that Cys11 in human PEX5 functions as a redox switch that regulates PEX5 activity in response to intracellular oxidative stress. Finally, we show that exposure of human PEX5 to oxidized glutathione results in a ubiquitination-deficient PEX5 molecule, and that substitution of Cys11 by a lysine can counteract this effect. In summary, these findings reveal that the activity of PEX5, and hence PTS1 import, is controlled by the redox state of the cytosol. The potential physiological implications of these findings are discussed.


Asunto(s)
Estrés Oxidativo , Peroxisomas/metabolismo , Señales de Clasificación de Proteína , Receptores Citoplasmáticos y Nucleares/metabolismo , Línea Celular , Cisteína/genética , Cisteína/metabolismo , Citosol/metabolismo , Glutatión/metabolismo , Humanos , Oxidación-Reducción , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Ubiquitinación
16.
PLoS Pathog ; 9(2): e1003128, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23468618

RESUMEN

AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys(39)-Glu(40) peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Apoptosis/fisiología , Toxinas Bacterianas/metabolismo , Metaloproteasas/metabolismo , Photobacterium/metabolismo , Factor de Transcripción ReIA/metabolismo , Factores de Virulencia/metabolismo , Animales , Lubina , Enfermedades de los Peces/metabolismo , Interacciones Huésped-Patógeno , Leucocitos/metabolismo , Leucocitos/patología , Proteínas Recombinantes
17.
J Biol Chem ; 288(40): 29151-9, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23963456

RESUMEN

Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and post-translationally targeted to the organelle by PEX5, the peroxisomal shuttling receptor. The pathway followed by PEX5 during this process is known with reasonable detail. After recognizing cargo proteins in the cytosol, the receptor interacts with the peroxisomal docking/translocation machinery, where it gets inserted; PEX5 is then monoubiquitinated, extracted back to the cytosol and, finally, deubiquitinated. However, despite this information, the exact step of this pathway where cargo proteins are translocated across the organelle membrane is still ill-defined. In this work, we used an in vitro import system to characterize the translocation mechanism of a matrix protein possessing a type 1 targeting signal. Our results suggest that translocation of proteins across the organelle membrane occurs downstream of a reversible docking step and upstream of the first cytosolic ATP-dependent step (i.e. before ubiquitination of PEX5), concomitantly with the insertion of the receptor into the docking/translocation machinery.


Asunto(s)
Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Adenosina Trifosfato/metabolismo , Animales , Proteínas Portadoras/metabolismo , Citosol/metabolismo , Humanos , Ratones , Modelos Biológicos , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Señales de Clasificación de Proteína , Transporte de Proteínas , Fracciones Subcelulares/metabolismo , Temperatura
18.
Infect Immun ; 82(12): 5270-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25287919

RESUMEN

AIP56 (apoptosis-inducing protein of 56 kDa) is a metalloprotease AB toxin secreted by Photobacterium damselae subsp. piscicida that acts by cleaving NF-κB. During infection, AIP56 spreads systemically and depletes phagocytes by postapoptotic secondary necrosis, impairing the host phagocytic defense and contributing to the genesis of infection-associated necrotic lesions. Here we show that mouse bone marrow-derived macrophages (mBMDM) intoxicated by AIP56 undergo NF-κB p65 depletion and apoptosis. Similarly to what was reported for sea bass phagocytes, intoxication of mBMDM involves interaction of AIP56 C-terminal region with cell surface components, suggesting the existence of a conserved receptor. Biochemical approaches and confocal microscopy revealed that AIP56 undergoes clathrin-dependent endocytosis, reaches early endosomes, and follows the recycling pathway. Translocation of AIP56 into the cytosol requires endosome acidification, and an acidic pulse triggers translocation of cell surface-bound AIP56 into the cytosol. Accordingly, at acidic pH, AIP56 becomes more hydrophobic, interacting with artificial lipid bilayer membranes. Altogether, these data indicate that AIP56 is a short-trip toxin that reaches the cytosol using an acidic-pH-dependent mechanism, probably from early endosomes. Usually, for short-trip AB toxins, a minor pool reaches the cytosol by translocating from endosomes, whereas the rest is routed to lysosomes for degradation. Here we demonstrate that part of endocytosed AIP56 is recycled back and released extracellularly through a mechanism requiring phosphoinositide 3-kinase (PI3K) activity but independent of endosome acidification. So far, we have been unable to detect biological activity of recycled AIP56, thereby bringing into question its biological relevance as well as the importance of the recycling pathway.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Toxinas Bacterianas/metabolismo , FN-kappa B/metabolismo , Photobacterium/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Citosol/química , Endocitosis , Endosomas/química , Concentración de Iones de Hidrógeno , Macrófagos/microbiología , Macrófagos/fisiología , Masculino , Ratones Endogámicos C57BL , Microscopía Confocal , Péptido Hidrolasas/metabolismo , Transporte de Proteínas , Proteolisis
19.
An Acad Bras Cienc ; 86(3): 1303-14, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25140504

RESUMEN

This study sought to morphometrically analyze the jejunal wall of protein-malnourished rats administered a probiotic supplement. The sample consisted of recently weaned Wistar rats (Rattus norvegicus) distributed among four groups: animals given a commercial diet (G1, n = 4); animals given the same ration as G1 plus a probiotic supplement (G2, n = 4); animals given a 4% protein diet (G3, n = 4); and animals given the same ration as G3 plus a probiotic supplement (G4, n = 4). After 12 weeks, part of the jejunum was harvested and subjected to routine histological processing. Transverse sections with a thickness of 3 µm were stained with HE, and histochemical techniques were used to assay for glycoconjugates, including staining with periodic acid-Schiff (PAS) + diastase, Alcian Blue (AB) solution at pH 2.5, and Alcian Blue solution at pH 1.0. Morphometric analysis of the bowel wall showed that the probiotic culture used in this study induced hypertrophy of several layers of the jejunal wall in well-nourished animals and reduced the bowel wall atrophy usually observed in protein-malnourished animals. Neither malnutrition nor the use of probiotics altered the relationship between the number of goblet cells and the number of enterocytes.


Asunto(s)
Mucosa Intestinal/patología , Probióticos/administración & dosificación , Desnutrición Proteico-Calórica/patología , Alimentación Animal , Animales , Modelos Animales de Enfermedad , Histocitoquímica , Masculino , Ratas Wistar , Destete
20.
Acta Vet Hung ; 62(2): 205-14, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24334071

RESUMEN

This study aimed to assess serum total alkaline phosphatase (ALP) and its bone isoform (BALP) levels during the ageing and in different physiologic states of sheep, in order to expand the knowledge about the variation of these biomarkers over the sheep lifespan. Ninety female sheep were divided into nine groups of various ages and physiological states (dry, lactation and pregnancy). Serum ALP, BALP and mineral levels were determined by commercial immunoassay, molecular absorbance spectrophotometry and chemical luminescence for BALP determination. Serum ALP and BALP decreased as sheep aged, and no statistically significant differences were obtained between ewes in different physiologic states. The continuous decline of serum BALP concentration along the sheep lifespan, namely in mature and old sheep, is a sign of decreasing bone turnover associated with ageing. Serum calcium concentrations increased slightly until 2 years of age and then showed a tenuous but statistically significant decrease in mature sheep, while serum phosphorus maintained an uninterrupted decrease as sheep matured. The knowledge of serum values of bone biomarkers throughout the sheep lifespan may be useful in preclinical orthopaedic research studies and for animal science studies using sheep.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA