Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nutr ; 153(9): 2571-2584, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37394117

RESUMEN

BACKGROUND: The consumption of poor-quality protein increases the risk of essential amino acid (EAA) deficiency, particularly for lysine and threonine. Thus, it is necessary to be able to detect easily EAA deficiency. OBJECTIVES: The purpose of this study was to develop metabolomic approaches to identify specific biomarkers for an EAA deficiency, such as lysine and threonine. METHODS: Three experiments were performed on growing rats. In experiment 1, rats were fed for 3 weeks with lysine (L30), or threonine (T53)-deficient gluten diets, or nondeficient gluten diet (LT100) in comparison with the control diet (milk protein, PLT). In experiments 2a and 2b, rats were fed at different concentrations of lysine (L) or threonine (T) deficiency: L/T15, L/T25, L/T40, L/T60, L/T75, P20, L/T100 and L/T170. Twenty-four-hour urine and blood samples from portal vein and vena cava were analyzed using LC-MS. Data from experiment 1 were analyzed by untargeted metabolomic and Independent Component - Discriminant Analysis (ICDA) and data from experiments 2a and 2b by targeted metabolomic and a quantitative Partial Least- Squares (PLS) regression model. Each metabolite identified as significant by PLS or ICDA was then tested by 1-way ANOVA to evaluate the diet effect. A two-phase linear regression analysis was used to determine lysine and threonine requirements. RESULTS: ICDA and PLS found molecules that discriminated between the different diets. A common metabolite, the pipecolate, was identified in experiments 1 and 2a, confirming that it could be specific to lysine deficiency. Another metabolite, taurine, was found in experiments 1 and 2b, so probably specific to threonine deficiency. Pipecolate or taurine breakpoints obtained give a value closed to the values obtained by growth indicators. CONCLUSIONS: Our results showed that the EAA deficiencies influenced the metabolome. Specific urinary biomarkers identified could be easily applied to detect EAA deficiency and to determine which AA is deficient.


Asunto(s)
Lisina , Desnutrición , Ratas , Animales , Treonina , Taurina , Dieta , Glútenes
2.
Eur J Nutr ; 62(1): 407-417, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36071290

RESUMEN

PURPOSE: Protein synthesis and proteolysis are known to be controlled through mammalian target of rapamycin, AMP-activated kinase (AMPK) and general control non-derepressible 2 (GCN2) pathways, depending on the nutritional condition. This study aimed at investigating the contribution of liver AMPK and GCN2 on the adaptation to high variations in protein intake. METHODS: To evaluate the answer of protein pathways to high- or low-protein diet, male wild-type mice and genetically modified mice from C57BL/6 background with liver-specific AMPK- or GCN2-knockout were fed from day 25 diets differing in their protein level as energy: LP (5%), NP (14%) and HP (54%). Two hours after a 1 g test meal, protein synthesis rate was measured after a 13C valine flooding dose. The gene expression of key enzymes involved in proteolysis and GNC2 signaling pathway were quantified. RESULTS: The HP diet but not the LP diet was associated with a decrease in fractional synthesis rate by 29% in the liver compared to NP diet. The expression of mRNA encoding ubiquitin and Cathepsin D was not sensitive to the protein content. The deletion of AMPK or GCN2 in the liver did not affect nor protein synthesis rates and neither proteolysis markers in the liver or in the muscle, whatever the protein intake. In the postprandial state, protein level alters protein synthesis in the liver but not in the muscle. CONCLUSIONS: Taken together, these results suggest that liver AMPK and GCN2 are not involved in this adaptation to high- and low-protein diet observed in the postprandial period.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteínas Serina-Treonina Quinasas , Ratones , Masculino , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Dieta con Restricción de Proteínas , Periodo Posprandial , Ratones Endogámicos C57BL , Hígado/metabolismo , Mamíferos/metabolismo
3.
Am J Physiol Endocrinol Metab ; 322(2): E154-E164, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34927458

RESUMEN

Protein requirement has been determined at 10%-15% energy. Under dietary self-selection, rats ingest 25%-30% energy as protein and regulate FGF21 (a hormone signaling protein deficiency) to levels lower than those measured with a 15% protein (15P) diet. Our hypothesis is that if a 15P diet was indeed sufficient to ensure protein homeostasis, it is probably a too low protein level to ensure optimal energy homeostasis. Adult male Wistar rats were used in this study. The first objective was to determine the changes in food intake, body composition, and plasma FGF21, IGF-1, and PYY concentrations in rats fed 8P, 15P, 30P, 40P, or 50P diets. The second was to determine whether the FGF21 levels measured in the rats were related to spontaneous protein intake. Rats were fed a 15P diet and then allowed to choose between a protein diet and a protein-free diet. Food intake and body weight were measured throughout the experiments. Body composition was determined at different experimental stages. Plasma samples were collected to measure FGF21, IGF-1, and PYY concentrations. A 15P diet appears to result in higher growth than that observed with the 30P, 40P, and 50P diets. However, the 15P diet probably does not provide optimal progression of body composition owing to a tendency of 15P rats to fix more fat and energy in the body. The variable and higher concentrations of FGF21 in the 15P diet suggest a deficit in protein intake, but this does not appear to be a parameter reflecting the adequacy of protein intake relative to individual protein requirements.NEW & NOTEWORTHY Under dietary self-selection, rats choose to ingest 25%-30% of energy as protein, a value higher than the protein requirement (10%-15%). According to our results, this higher spontaneous intake reflects the fact that rats fed a 15% protein diet, compared with high-protein diets, tend to bind more fat and have higher concentrations of FGF21, a hormone signaling protein deficiency. A 15% protein diet appears to be sufficient for protein homeostasis but not for optimal energy homeostasis.


Asunto(s)
Composición Corporal/fisiología , Dieta Rica en Proteínas , Dieta con Restricción de Proteínas , Ingestión de Alimentos/fisiología , Factores de Crecimiento de Fibroblastos/sangre , Preferencias Alimentarias/fisiología , Animales , Ingestión de Energía , Metabolismo Energético/fisiología , Factor I del Crecimiento Similar a la Insulina/análisis , Masculino , Péptido YY/sangre , Ratas , Ratas Wistar
4.
Eur J Nutr ; 61(6): 3189-3200, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35435502

RESUMEN

PURPOSE: Physiological parameters such as adiposity and age are likely to influence protein digestion and utilization. The aim of this study was to evaluate the combined effects of age and adiposity on casein protein and amino acid true digestibility and its postprandial utilization in rats. METHODS: Four groups were included (n = 7/8): 2 months/normal adiposity, 2 months/high adiposity, 11 months/normal adiposity and 11 months/high adiposity. Rats were given a calibrated meal containing 15N-labeled casein (Ingredia, Arras, France) and were euthanized 6 h later. Digestive contents were collected to assess protein and amino acid digestibilities. 15N enrichments were measured in plasma and urine to determine total body deamination. Fractional protein synthesis rate (FSR) was determined in different organs using a flooding dose of 13C valine. RESULTS: Nitrogen and amino acid true digestibility of casein was around 95-96% depending on the group and was increased by 1% in high adiposity rats (P = 0.04). Higher adiposity levels counteracted the increase in total body deamination (P = 0.03) that was associated with older age. Significant effects of age (P = 0.006) and adiposity (P = 0.002) were observed in the muscle FSR, with age decreasing it and adiposity increasing it. CONCLUSION: This study revealed that a higher level of adiposity resulted in a slight increase in protein and individual amino acid true digestibility values and seemed to compensate for the metabolic postprandial protein alterations observed at older age.


Asunto(s)
Caseínas , Íleon , Adiposidad , Envejecimiento , Aminoácidos/metabolismo , Animales , Caseínas/metabolismo , Proteínas en la Dieta/metabolismo , Digestión , Íleon/metabolismo , Ratas
5.
Am J Physiol Endocrinol Metab ; 321(5): E621-E635, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34569272

RESUMEN

Amino acids are involved in energy homeostasis, just as are carbohydrates and lipids. Therefore, mechanisms controlling protein intake should operate independently and in combination with systems controlling overall energy intake to coordinate appropriate metabolic and behavioral responses. The objective of this study was to quantify the respective roles of dietary protein and carbohydrate levels on energy balance, plasma fibroblast growth factor 21 (FGF21) and insulin growth factor 1 (IGF-1) concentrations, and hypothalamic neurotransmitters (POMC, NPY, AgRP, and CART). In a simplified geometric framework, 7-wk-old male Wistar rats were fed 12 diets containing 3%-30% protein for 3 wk, in which carbohydrates accounted for 30%-75% of the carbohydrate and fat part of the diet. As a result of this study, most of the studied parameters (body composition, energy expenditure, plasma FGF21 and IGF-1 concentrations, and Pomc/Agrp ratio) responded mainly to the protein content and to a lesser extent to the carbohydrate content in the diet.NEW & NOTEWORTHY As mechanisms controlling protein intake can operate independently and in combination with those controlling energy intakes, we investigated the metabolic and behavioral effects of the protein-carbohydrate interaction. With a simplified geometric framework, we showed that body composition, energy balance, plasma FGF21 and IGF-1 concentrations, and hypothalamic Pomc/Agrp ratio were primarily responsive to protein content and, to a lesser extent, to carbohydrate content of the diet.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Proteínas en la Dieta/farmacología , Metabolismo Energético/fisiología , Factores de Crecimiento de Fibroblastos/biosíntesis , Hipotálamo/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Composición Corporal/efectos de los fármacos , Expresión Génica , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Neurotransmisores/metabolismo , Proopiomelanocortina/metabolismo , Ratas , Ratas Wistar
6.
J Nutr ; 151(7): 1921-1936, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33830241

RESUMEN

BACKGROUND: Under dietary self-selection (DSS), rats ingest 25-30% of energy as protein. This high level appears to be explained by metabolic benefits related to reduced carbohydrate dependence and associated pathologies. However, the mechanisms underlying these choices remain largely misunderstood. OBJECTIVES: The aim was to test the hypothesis that in a DSS model, rats select a protein-to-energy (PE) ratio to maintain the protein-to-carbohydrate (PC) ratio constant and that fibroblast growth factor 21 (FGF21) is involved in this response. METHODS: Adult male Wistar rats were used in 3 experiments. The first was to determine whether the PE ratio was influenced by changes in carbohydrate content. The second was to test whether the PE ratio was defended with a modified DSS model. The third was to determine whether the selected PE ratio was of metabolic interest compared with a standard 15% protein diet. Food intake, body weight, and energy expenditure were measured. After 3 wk, plasma was sampled and rats were killed to determine body composition and gene expression. Statistical analyses were mainly done by ANOVA tests and correlation tests. RESULTS: The selected PE ratio increased from 20% to 35% when the carbohydrate content of the protein-free diet increased from 30% to 75% (R2 = 0.56; P < 10-6). Consequently, the PC ratio was constant (70%) in all groups (P = 0.18). In self-selecting rats, plasma FGF21 concentrations were 3 times lower than in rats fed the 5% protein diet (P < 10-4) and similar to those in rats fed a 30% diet. CONCLUSIONS: This study showed that self-selecting rats established PE ratios larger than those considered sufficient to achieve optimal growth in adult rats (10-15%), and the ratios were highly dependent on carbohydrates, apparently with the aim of maintaining a constant and high PC ratio. This was associated with a minimization of plasma FGF21.


Asunto(s)
Carbohidratos de la Dieta , Hígado , Animales , Dieta con Restricción de Proteínas , Carbohidratos de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Ingestión de Energía , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar
7.
Br J Nutr ; 125(4): 389-397, 2021 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32713356

RESUMEN

The objective of this study was to assess the nutritional quality of pea protein isolate in rats and to evaluate the impact of methionine (Met) supplementation. Several protein diets were studied: pea protein, casein, gluten, pea protein-gluten combination and pea protein supplemented with Met. Study 1: Young male Wistar rats (n 8/group) were fed the test diets ad libitum for 28 d. The protein efficiency ratio (PER) was measured. Study 2: Adult male Wistar rats (n 9/group) were fed the test diets for 10 d. A protein-free diet group was used to determine endogenous losses of N. The rats were placed in metabolism cages for 3 d to assess N balance, true faecal N digestibility and to calculate the Protein Digestible-Corrected Amino Acid Score (PDCAAS). They were then given a calibrated meal and euthanised 6 h later for collection of digestive contents. The true caecal amino acid (AA) digestibility was determined, and the Digestible Indispensable Amino Acid Score (DIAAS) was calculated. Met supplementation increased the PER of pea protein (2·52 v. 1·14, P < 0·001) up to the PER of casein (2·55). Mean true caecal AA digestibility was 94 % for pea protein. The DIAAS was 0·88 for pea protein and 1·10 with Met supplementation, 1·29 for casein and 0·25 for gluten. Pea protein was highly digestible in rats under our experimental conditions, and Met supplementation enabled generation of a mixture that had a protein quality that was not different from that of casein.


Asunto(s)
Caseínas/metabolismo , Glútenes/metabolismo , Metionina/metabolismo , Pisum sativum/química , Proteínas de Plantas/metabolismo , Alimentación Animal/análisis , Animales , Caseínas/normas , Dieta , Glútenes/normas , Masculino , Metionina/normas , Nitrógeno/metabolismo , Valor Nutritivo , Proteínas de Plantas/química , Proteínas de Plantas/normas , Ratas
8.
Am J Physiol Endocrinol Metab ; 317(6): E1015-E1021, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31573843

RESUMEN

General control nonderepressible 2 (GCN2) is a kinase that detects amino acid deficiency and is involved in the control of protein synthesis and energy metabolism. However, the role of hepatic GCN2 in the metabolic adaptations in response to the modulation of dietary protein has been seldom studied. Wild-type (WT) and liver GCN2-deficient (KO) mice were fed either a normo-protein diet, a low-protein diet, or a high-protein diet for 3 wk. During this period, body weight, food intake, and metabolic parameters were followed. In mice fed normo- and high-protein diets, GCN2 pathway in the liver is not activated in WT mice, leading to a similar metabolic profile with the one of KO mice. On the contrary, a low-protein diet activates GCN2 in WT mice, inducing FGF21 secretion. In turn, FGF21 maintains a high level of lipid oxidation, leading to a different postprandial oxidation profile compared with KO mice. Hepatic GCN2 controls FGF21 secretion under a low-protein diet and modulates a whole body postprandial oxidation profile.


Asunto(s)
Dieta con Restricción de Proteínas , Metabolismo Energético/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Tejido Adiposo/metabolismo , Animales , Composición Corporal , Peso Corporal , Dieta Rica en Proteínas , Conducta Alimentaria , Glucosa/metabolismo , Glucógeno/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Oxidación-Reducción , Periodo Posprandial , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Triglicéridos/metabolismo
9.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G592-G601, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31460792

RESUMEN

Bariatric surgery may induce protein malabsorption, although data are scarce. This study aims at evaluating dietary protein bioavailability after different bariatric surgeries in rats. Diet-induced obese Wistar rats were operated for vertical sleeve gastrectomy (VSG) or Roux-en-Y gastric bypass (RYGB). The control group was composed of pair-fed, sham-operated rats (Sham). Two weeks after surgery, rats were fed a 15N protein meal. Protein bioavailability was assessed by determination of 15N recovery in the gastrointestinal tract and organs 6 h after the meal. Fractional protein synthesis rate (FSR) was assessed using a flooding dose of 13C valine. Weight loss was the highest in RYGB rats and the lowest in Sham rats. Surprisingly, RYGB (95.6 ± 0.7%) improved protein digestibility (P = 0.045) compared with Sham (93.5 ± 0.5%) and VSG (93.8 ± 0.6%). In contrast, 15N retained in the liver (P = 0.001) and plasma protein (P = 0.037) was lower than in Sham, with a similar trend in muscle (P = 0.052). FSR was little altered by bariatric surgery, except for a decrease in the kidney of RYGB (P = 0.02). The 15N distribution along the small intestinal tissue suggests that dietary nitrogen was considerably retained in the remodeled mucosa of RYGB compared with Sham. This study revealed that in contrast to VSG, RYGB slightly improved protein digestibility but altered peripheral protein bioavailability. This effect may be ascribed to a higher uptake of dietary amino acids by the remodeled intestine.NEW & NOTEWORTHY Using a sensitive 15N meal test, we found that gastric bypass slightly improved protein digestibility compared with sleeve gastrectomy or control but, in contrast, lowered protein retention in the liver and muscles. This paradox can be due to a higher uptake of dietary nitrogen by the intestinal mucosa that was hypertrophied. This study provides new insight on the digestive and metabolic fate of dietary protein in different models of bariatric surgery in rats.


Asunto(s)
Proteínas en la Dieta/farmacocinética , Derivación Gástrica/métodos , Animales , Disponibilidad Biológica , Proteínas en la Dieta/metabolismo , Digestión , Derivación Gástrica/efectos adversos , Mucosa Intestinal/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Nitrógeno/farmacocinética , Ratas , Ratas Wistar
10.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R486-R501, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30735436

RESUMEN

Low-protein diets most often induce increased energy intake in an attempt to increase protein intake to meet protein needs with a risk of accumulation as fat of the excess energy intake. In female adult BALB/c mice, a decrease in dietary casein from 20% to 6% and 3% increased energy intake and slightly increased adiposity, and this response was exacerbated with soy proteins with low methionine content. The effect on fat mass was however limited because total energy expenditure increased to the same extent as energy intake. Lean body mass was preserved in all 6% fed mice and reduced only in 3% casein-fed animals. Insulin response to an oral glucose tolerance test was reduced in soy-fed mice and in low-protein-fed mice. Low-protein diets did not affect uncoupling protein 1 and increased fibroblast growth factor 21 (FGF21) in brown adipose tissue and increased FGF21, fatty acid synthase, and cluster of differentiation 36 in the liver. In the hypothalamus, neuropeptide Y was increased and proopiomelanocortin was decreased only in 3% casein-fed mice. In plasma, when protein was decreased, insulin-like growth factor-1 decreased and FGF21 increased and plasma FGF21 was best described by using a combination of dietary protein level, protein-to-carbohydrate ratio, and protein-to-methionine ratio in the diet. In conclusion, reducing dietary protein and protein quality increases energy intake but also energy expenditure resulting in an only slight increase in adiposity. In this process, FGF21 is probably an important signal that responds to a complex combination of protein restriction, protein quality, and carbohydrate content of the diet.


Asunto(s)
Adiposidad , Dieta con Restricción de Proteínas , Carbohidratos de la Dieta/administración & dosificación , Ingestión de Energía , Metabolismo Energético , Factores de Crecimiento de Fibroblastos/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Metionina/deficiencia , Valor Nutritivo , Almidón/administración & dosificación , Tejido Adiposo/metabolismo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Biomarcadores , Carbohidratos de la Dieta/metabolismo , Regulación hacia Abajo , Femenino , Hipotálamo/metabolismo , Hígado/metabolismo , Ratones Endogámicos BALB C , Almidón/metabolismo , Regulación hacia Arriba
11.
J Nutr ; 149(2): 270-279, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753533

RESUMEN

BACKGROUND: We have reported large differences in adiposity (fat mass/body weight) gain between rats fed a low-fat, high-starch diet, leading to their classification into carbohydrate "sensitive" and "resistant" rats. In sensitive animals, fat accumulates in visceral adipose tissues, leading to the suggestion that this form of obesity could be responsible for rapid development of metabolic syndrome. OBJECTIVE: We investigated whether increased amylase secretion by the pancreas and accelerated starch degradation in the intestine could be responsible for this phenotype. METHOD: Thirty-two male Wistar rats (7-wk-old) were fed a purified low-fat (10%), high-carbohydrate diet for 6 wk, in which most of the carbohydrate (64% by energy) was provided as corn starch. Meal tolerance tests of the Starch diet were performed to measure glucose and insulin responses to meal ingestion. Indirect calorimetry combined with use of 13C-labelled dietary starch was used to assess meal-induced changes in whole body and starch-derived glucose oxidation. Real-time polymerase chain reaction was used to assess mRNA expression in pancreas, liver, white and brown adipose tissues, and intestine. Amylase activity was measured in the duodenum, jejunum, and ileum contents. ANOVA and regression analyses were used for statistical comparisons. RESULTS: "Resistant" and "sensitive" rats were separated according to adiposity gain during the study (1.73% ± 0.20% compared with 4.35% ± 0.36%). Breath recovery of 13CO2 from 13C-labelled dietary starch was higher in "sensitive" rats, indicating a larger increase in whole body glucose oxidation and, conversely, a larger decrease in lipid oxidation. Amylase mRNA expression in pancreas, and amylase activity in jejunum, were also higher in sensitive rats. CONCLUSION: Differences in digestion of starch can promote visceral fat accumulation in rats when fed a low-fat, high-starch diet. This mechanism may have important implications in human obesity.


Asunto(s)
Amilasas/metabolismo , Carbohidratos de la Dieta/efectos adversos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Obesidad/inducido químicamente , Páncreas/enzimología , Amilasas/genética , Animales , Glucemia , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta , Insulina/sangre , Insulina/metabolismo , Masculino , Comidas , Polisacáridos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Almidón , Aumento de Peso
12.
Am J Physiol Endocrinol Metab ; 314(2): E139-E151, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29138228

RESUMEN

Low protein (LP)-containing diets can induce overeating in rodents and possibly in humans in an effort to meet protein requirement, but the effects on energy expenditure (EE) are unclear. The present study evaluated the changes induced by reducing dietary protein from 20% to 6%-using either soy protein or casein-on energy intake, body composition, and EE in mice housed at 22°C or at 30°C (thermal neutrality). LP feeding increased energy intake and adiposity, more in soy-fed than in casein-fed mice, but also increased EE, thus limiting fat accumulation. The increase in EE was due mainly to an increase in spontaneous motor activity related to EE and not to thermoregulation. However, the high cost of thermoregulation at 22°C and the subsequent heat exchanges between nonshivering thermogenesis, motor activity, and feeding induced large differences in adaptation between mice housed at 22°C and at 30°C.


Asunto(s)
Adiposidad/fisiología , Regulación de la Temperatura Corporal , Dieta con Restricción de Proteínas/efectos adversos , Proteínas en la Dieta , Hiperfagia/etiología , Actividad Motora/fisiología , Adiposidad/efectos de los fármacos , Animales , Composición Corporal/fisiología , Regulación de la Temperatura Corporal/efectos de los fármacos , Regulación de la Temperatura Corporal/fisiología , Dieta con Restricción de Proteínas/clasificación , Dieta con Restricción de Proteínas/normas , Proteínas en la Dieta/clasificación , Proteínas en la Dieta/farmacología , Proteínas en la Dieta/normas , Ingestión de Energía/fisiología , Metabolismo Energético/fisiología , Femenino , Hiperfagia/metabolismo , Ratones , Ratones Endogámicos BALB C
14.
J Nutr ; 147(3): 281-292, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28122929

RESUMEN

Dietary protein may play an important role in the prevention of metabolic dysfunctions. However, the way in which the protein source affects these dysfunctions has not been clearly established. The aim of the current systematic review was to compare the impact of plant- and animal-sourced dietary proteins on several features of metabolic syndrome in humans. The PubMed database was searched for both chronic and acute interventional studies, as well as observational studies, in healthy humans or those with metabolic dysfunctions, in which the impact of animal and plant protein intake was compared while using the following variables: cholesterolemia and triglyceridemia, blood pressure, glucose homeostasis, and body composition. Based on data extraction, we observed that soy protein consumption (with isoflavones), but not soy protein alone (without isoflavones) or other plant proteins (pea and lupine proteins, wheat gluten), leads to a 3% greater decrease in both total and LDL cholesterol compared with animal-sourced protein ingestion, especially in individuals with high fasting cholesterol concentrations. This observation was made when animal proteins were provided as a whole diet rather than given supplementally. Some observational studies reported an inverse association between plant protein intake and systolic and diastolic blood pressure, but this was not confirmed by intervention studies. Moreover, plant protein (wheat gluten, soy protein) intake as part of a mixed meal resulted in a lower postprandial insulin response than did whey. This systematic review provides some evidence that the intake of soy protein associated with isoflavones may prevent the onset of risk factors associated with cardiovascular disease, i.e., hypercholesterolemia and hypertension, in humans. However, we were not able to draw any further conclusions from the present work on the positive effects of plant proteins relating to glucose homeostasis and body composition.


Asunto(s)
Proteínas en la Dieta , Carne/normas , Síndrome Metabólico/sangre , Proteínas de Plantas/normas , Animales , Presión Sanguínea , Humanos , Lípidos/sangre , Síndrome Metabólico/metabolismo
15.
J Nutr ; 147(9): 1669-1676, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28747486

RESUMEN

Background: Hepatic AMP-activated kinase (AMPK) activity is sensitive to the dietary carbohydrate-to-protein ratio. However, the role of AMPK in metabolic adaptations to variations in dietary macronutrients remains poorly understood.Objective: The objective of this study was to determine the role of hepatic AMPK in the adaptation of energy metabolism in response to modulation of the dietary carbohydrate-to-protein ratio.Methods: Male 7-wk-old wild-type (WT) and liver AMPK-deficient (knockout) mice were fed either a normal-protein and normal-carbohydrate diet (NP-NC; 14% protein, 76% carbohydrate on an energy basis), a low-protein and high-carbohydrate diet (LP-HC; 5% protein, 85% carbohydrate), or a high-protein and low-carbohydrate diet (HP-LC; 55% protein, 35% carbohydrate) for 3 wk. During this period, after an overnight fast, metabolic parameters were measured and indirect calorimetry was performed in mice during the first hours after refeeding a 1-g calibrated meal of their own diet in order to investigate lipid and carbohydrate metabolism.Results: Knockout mice fed an LP-HC or HP-LC meal exhibited 24% and 8% lower amplitudes in meal-induced carbohydrate and lipid oxidation changes. By contrast, knockout mice fed an NP-NC meal displayed normal carbohydrate and lipid oxidation profiles. These mice exhibited a transient increase in hepatic triglycerides and a decrease in hepatic glycogen. These changes were associated with a 650% higher secretion of fibroblast growth factor 21 (FGF21) 2 h after refeeding.Conclusions: The consequences of hepatic AMPK deletion depend on the dietary carbohydrate-to-protein ratio. In mice fed the NP-NC diet, deletion of AMPK in the liver led to an adaptation of liver metabolism resulting in increased secretion of FGF21. These changes possibly compensated for the absence of hepatic AMPK, as these mice exhibited normal postprandial changes in carbohydrate and lipid oxidation. By contrast, in mice fed the LP-HC and HP-LC diets, the lack of adjustment in liver metabolism in knockout mice resulted in a metabolic inflexibility, leading to a reduced amplitude of meal-induced changes in carbohydrate and lipid oxidation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Metabolismo de los Lípidos , Hígado/efectos de los fármacos , Periodo Posprandial , Proteínas Quinasas Activadas por AMP/deficiencia , Adaptación Fisiológica , Animales , Dieta , Dieta Baja en Carbohidratos , Dieta con Restricción de Proteínas , Carbohidratos de la Dieta/metabolismo , Carbohidratos de la Dieta/farmacología , Grasas de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Proteínas en la Dieta/farmacología , Metabolismo Energético/efectos de los fármacos , Ayuno , Factores de Crecimiento de Fibroblastos/metabolismo , Glucógeno/metabolismo , Hígado/metabolismo , Masculino , Comidas , Ratones Noqueados , Oxidación-Reducción , Triglicéridos/metabolismo
16.
Am J Physiol Regul Integr Comp Physiol ; 311(4): R771-R778, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27581809

RESUMEN

We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureagenesis under a high-protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for 1 wk and were then switched to an HP diet for 1, 3, 6, or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[15N]-[13C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13CO2 excretion was maximal, as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet.


Asunto(s)
Adaptación Fisiológica/fisiología , Aminoácidos/metabolismo , Carbono/metabolismo , Proteínas en la Dieta/metabolismo , Periodo Posprandial/fisiología , Administración Oral , Animales , Vaciamiento Gástrico/fisiología , Masculino , Ratas , Ratas Wistar , Micción/fisiología
17.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1169-76, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27030668

RESUMEN

We tested the hypothesis that, for rats fed a high-fat diet (HFD), a prioritization of maintaining protein intake may increase energy consumption and hence result in obesity, particularly for individuals prone to obesity ("fat sensitive," FS, vs. "fat resistant," FR). Male Wistar rats (n = 80) first received 3 wk of HFD (protein 15%, fat 42%, carbohydrate 42%), under which they were characterized as being FS (n = 18) or FR (n = 20) based on body weight gain. They then continued on the same HFD but in which protein (100%) was available separately from the carbohydrate:fat (50:50%) mixture. Under this second regimen, all rats maintained their previous protein intake, whereas intake of fat and carbohydrate was reduced by 50%. This increased protein intake to 26% and decreased fat intake to 37%. Adiposity gain was prevented in both FR and FS rats, and gain in fat-free mass was increased only in FS rats. At the end of the study, the rats were killed 2 h after ingestion of a protein meal, and their tissues and organs were collected for analysis of body composition and measurement of mRNA levels in the liver, adipose tissue, arcuate nucleus, and nucleus accumbens. FS rats had a higher expression of genes encoding enzymes involved in lipogenesis in the liver and white adipose tissue. These results show that FS rats strongly reduced food intake and adiposity gain through macronutrient selection, despite maintenance of a relatively high-fat intake and overexpression of genes favoring lipogenesis.


Asunto(s)
Adiposidad , Dieta Alta en Grasa , Carbohidratos de la Dieta/metabolismo , Grasas de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Ingestión de Energía , Obesidad/fisiopatología , Animales , Masculino , Ratas , Ratas Wistar
18.
Br J Nutr ; 114(8): 1132-42, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26285832

RESUMEN

High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the effects of high protein intake on the development of fat deposition and partitioning in response to high-fat and/or HS feeding. A total of thirty adult male Wistar rats were assigned to one of the six dietary regimens with low and high protein, sucrose and fat contents for 5 weeks. Body weight (BW) and food intake were measured weekly. Oral glucose tolerance tests and meal tolerance tests were performed after 4th and 5th weeks of the regimen, respectively. At the end of the study, the rats were killed 2 h after ingestion of a calibrated meal. Blood, tissues and organs were collected for analysis of circulating metabolites and hormones, body composition and mRNA expression in the liver and adipose tissues. No changes were observed in cumulative energy intake and BW gain after 5 weeks of dietary treatment. However, high-protein diets reduced by 20 % the adiposity gain induced by HS and high-sucrose high-fat (HS-HF) diets. Gene expression and transcriptomic analysis suggested that high protein intake reduced liver capacity for lipogenesis by reducing mRNA expressions of fatty acid synthase (fasn), acetyl-CoA carboxylase a and b (Acaca and Acacb) and sterol regulatory element binding transcription factor 1c (Srebf-1c). Moreover, ketogenesis, as indicated by plasma ß-hydroxybutyrate levels, was higher in HS-HF-fed mice that were also fed high protein levels. Taken together, these results suggest that high-protein diets may reduce adiposity by inhibiting lipogenesis and stimulating ketogenesis in the liver.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteínas en la Dieta/administración & dosificación , Sacarosa en la Dieta/efectos adversos , Lipogénesis , Ácido 3-Hidroxibutírico/sangre , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Adiposidad , Animales , Glucemia/metabolismo , Composición Corporal , Peso Corporal , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Grasas de la Dieta/administración & dosificación , Sacarosa en la Dieta/administración & dosificación , Ingestión de Energía , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Ghrelina/sangre , Prueba de Tolerancia a la Glucosa , Hipotálamo/metabolismo , Leptina/sangre , Hígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Ratas , Ratas Wistar , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triglicéridos/sangre
19.
Am J Physiol Regul Integr Comp Physiol ; 307(3): R299-309, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24898839

RESUMEN

Obesity-prone (OP) rodents are used as models of human obesity predisposition. The goal of the present study was to identify preexisting defects in energy expenditure components in OP rats. Two studies were performed. In the first one, male Wistar rats (n = 48) were fed a high-carbohydrate diet (HCD) for 3 wk and then a high-fat diet (HFD) for the next 3 wk. This study showed that adiposity gain under HCD was 2.9-fold larger in carbohydrate-sensitive (CS) than in carbohydrate-resistant (CR) rats, confirming the concept of "carbohydrate-sensitive" rats. Energy expenditure (EE), respiratory quotient (RQ), caloric intake (CI), and locomotor activity measured during HFD identified no differences in EE and RQ between fat-resistant (FR) and fat-sensitive (FS) rats, and indicated that obesity developed in FS rats only as the result of a larger CI not fully compensated by a parallel increase in EE. A specific pattern of spontaneous activity, characterized by reduced activity burst intensity, was identified in FS rats but not in CS ones. This mirrors a previous observation that under HCD, CS but not FS rats, exhibited bursts of activity of reduced intensity. In a second study, rats were fed a HFD for 3 wk, and the components of energy expenditure were examined by indirect calorimetry in 10 FR and 10 FS rats. This study confirmed that a low basal EE, reduced thermic effect of feeding, defective postprandial energy partitioning, or a defective substrate utilization by the working muscle are not involved in the FS phenotype.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Grasas de la Dieta/farmacología , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Obesidad/genética , Obesidad/fisiopatología , Animales , Composición Corporal/efectos de los fármacos , Composición Corporal/fisiología , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Calorimetría Indirecta , Modelos Animales de Enfermedad , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Predisposición Genética a la Enfermedad/genética , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratas , Ratas Wistar
20.
Curr Opin Clin Nutr Metab Care ; 17(4): 349-54, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24839951

RESUMEN

PURPOSE OF REVIEW: This review presents the different pathways by which protein and amino acid impact glucose control. The review more particularly discusses the contradictory effects reported in the literature on the involvement of amino acid on glucose production and in insulin secretion and sensitivity. RECENT FINDINGS: Some recent findings allow a better understanding of the direct and indirect mechanisms involved in the insulinotropic activity of some amino acids in pancreatic ß-cell and in the production of glucose through liver gluconeogenesis that participates to improve the control of glycemia. In contrast, the potential deleterious effects of branched chain amino acid, and particularly leucine, hypothesized in previous publications, have been discussed in some recent publications. SUMMARY: These processes are of high clinical relevance since the role of protein and amino acid have been repeatedly discussed to improve insulin secretion in type 2 diabetes patients or in weight management strategy in overweight and obese individuals. In addition, whether blood amino acid could be used as biomarkers for the risk of type 2 diabetes needs to be discussed.


Asunto(s)
Glucemia/metabolismo , Proteínas en la Dieta , Aminoácidos/sangre , Animales , Diabetes Mellitus Tipo 2/terapia , Modelos Animales de Enfermedad , Humanos , Insulina/sangre , Células Secretoras de Insulina/metabolismo , Periodo Posprandial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA