Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 148(1-2): 244-58, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265415

RESUMEN

p53 is a frequent target for mutation in human tumors, and mutant p53 proteins can actively contribute to tumorigenesis. We employed a three-dimensional culture model in which nonmalignant breast epithelial cells form spheroids reminiscent of acinar structures found in vivo, whereas breast cancer cells display highly disorganized morphology. We found that mutant p53 depletion is sufficient to phenotypically revert breast cancer cells to a more acinar-like morphology. Genome-wide expression analysis identified the mevalonate pathway as significantly upregulated by mutant p53. Statins and sterol biosynthesis intermediates reveal that this pathway is both necessary and sufficient for the phenotypic effects of mutant p53 on breast tissue architecture. Mutant p53 associates with sterol gene promoters at least partly via SREBP transcription factors. Finally, p53 mutation correlates with highly expressed sterol biosynthesis genes in human breast tumors. These findings implicate the mevalonate pathway as a therapeutic target for tumors bearing mutations in p53.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ácido Mevalónico/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Mutación , Prenilación , Regiones Promotoras Genéticas , Simvastatina/farmacología , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
2.
Cell ; 149(5): 994-1007, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608083

RESUMEN

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica , Evolución Clonal , Mutación , Algoritmos , Aberraciones Cromosómicas , Femenino , Humanos , Mutación Puntual
3.
Cell ; 149(5): 979-93, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608084

RESUMEN

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Asunto(s)
Neoplasias de la Mama/genética , Análisis Mutacional de ADN , Estudio de Asociación del Genoma Completo , Mutación , Desaminasas APOBEC-1 , Proteína BRCA2/genética , Citidina Desaminasa/metabolismo , Femenino , Genes BRCA1 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
4.
N Engl J Med ; 384(5): 428-439, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33471991

RESUMEN

BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking. METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity. RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants. CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).


Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética , Mutación Missense , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Modelos Logísticos , Persona de Mediana Edad , Oportunidad Relativa , Riesgo , Análisis de Secuencia de ADN , Adulto Joven
5.
Nucleic Acids Res ; 50(21): 12131-12148, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36477895

RESUMEN

Most cancer alterations occur in the noncoding portion of the human genome, where regulatory regions control gene expression. The discovery of noncoding mutations altering the cells' regulatory programs has been limited to few examples with high recurrence or high functional impact. Here, we show that transcription factor binding sites (TFBSs) have similar mutation loads to those in protein-coding exons. By combining cancer somatic mutations in TFBSs and expression data for protein-coding and miRNA genes, we evaluate the combined effects of transcriptional and post-transcriptional alterations on the regulatory programs in cancers. The analysis of seven TCGA cohorts culminates with the identification of protein-coding and miRNA genes linked to mutations at TFBSs that are associated with a cascading trans-effect deregulation on the cells' regulatory programs. Our analyses of cis-regulatory mutations associated with miRNAs recurrently predict 12 mature miRNAs (derived from 7 precursors) associated with the deregulation of their target gene networks. The predictions are enriched for cancer-associated protein-coding and miRNA genes and highlight cis-regulatory mutations associated with the dysregulation of key pathways associated with carcinogenesis. By combining transcriptional and post-transcriptional regulation of gene expression, our method predicts cis-regulatory mutations related to the dysregulation of key gene regulatory networks in cancer patients.


Asunto(s)
MicroARNs , Neoplasias , Humanos , Regulación de la Expresión Génica , Neoplasias/genética , Mutación , MicroARNs/fisiología , Redes Reguladoras de Genes
6.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34737229

RESUMEN

Basal-like breast cancer (BLBC) is the most aggressive subtype of breast tumors with poor prognosis and limited molecular-targeted therapy options. We show that BLBC cells have a high Cys demand and reprogrammed Cys metabolism. Patient-derived BLBC tumors from four different cohorts exhibited elevated expression of the transsulfuration enzyme cystathione ß-synthetase (CBS). CBS silencing (shCBS) made BLBC cells less invasive, proliferate slower, more vulnerable to oxidative stress and cystine (CySSCy) deprivation, prone to ferroptosis, and less responsive to HIF1-α activation under hypoxia. shCBS xenograft tumors grew slower than controls and exhibited impaired angiogenesis and larger necrotic areas. Sulfur metabolite profiling suggested that realigned sulfide/persulfide-inducing functions of CBS are important in BLBC tumor progression. Supporting this, the exclusion of serine, a substrate of CBS for producing Cys but not for producing sulfide/persulfide, did not exacerbate CySSCy deprivation-induced ferroptosis in shCBS BLBC cells. Impaired Tyr phosphorylation was detected in shCBS cells and xenografts, likely due to persulfidation-inhibited phosphatase functions. Overexpression of cystathione γ-lyase (CSE), which can also contribute to cellular sulfide/persulfide production, compensated for the loss of CBS activities, and treatment of shCBS xenografts with a CSE inhibitor further blocked tumor growth. Glutathione and protein-Cys levels were not diminished in shCBS cells or xenografts, but levels of Cys persulfidation and the persulfide-catabolizing enzyme ETHE1 were suppressed. Finally, expression of enzymes of the oxidizing Cys catabolism pathway was diminished, but expression of the persulfide-producing CARS2 was elevated in human BLBC tumors. Hence, the persulfide-producing pathways are major targetable determinants of BLBC pathology that could be therapeutically exploited.


Asunto(s)
Cistationina betasintasa/metabolismo , Cisteína/metabolismo , Neoplasias de la Mama Triple Negativas/enzimología , Animales , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Ferroptosis , Humanos , Ratones SCID , Neovascularización Patológica , Estrés Oxidativo , Sulfuros/metabolismo
7.
Nature ; 543(7647): 714-718, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28329761

RESUMEN

Somatic cells acquire mutations throughout the course of an individual's life. Mutations occurring early in embryogenesis are often present in a substantial proportion of, but not all, cells in postnatal humans and thus have particular characteristics and effects. Depending on their location in the genome and the proportion of cells they are present in, these mosaic mutations can cause a wide range of genetic disease syndromes and predispose carriers to cancer. They have a high chance of being transmitted to offspring as de novo germline mutations and, in principle, can provide insights into early human embryonic cell lineages and their contributions to adult tissues. Although it is known that gross chromosomal abnormalities are remarkably common in early human embryos, our understanding of early embryonic somatic mutations is very limited. Here we use whole-genome sequences of normal blood from 241 adults to identify 163 early embryonic mutations. We estimate that approximately three base substitution mutations occur per cell per cell-doubling event in early human embryogenesis and these are mainly attributable to two known mutational signatures. We used the mutations to reconstruct developmental lineages of adult cells and demonstrate that the two daughter cells of many early embryonic cell-doubling events contribute asymmetrically to adult blood at an approximately 2:1 ratio. This study therefore provides insights into the mutation rates, mutational processes and developmental outcomes of cell dynamics that operate during early human embryogenesis.


Asunto(s)
Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Mutación , Adulto , Células Sanguíneas/metabolismo , Linaje de la Célula/genética , Genoma Humano/genética , Mutación de Línea Germinal/genética , Humanos , Mosaicismo , Mutagénesis , Tasa de Mutación
8.
Genes Dev ; 29(12): 1298-315, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26080815

RESUMEN

Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Ensamble y Desensamble de Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Células HT29 , Humanos , Células MCF-7 , Mutación/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Conformación Proteica , Factores de Transcripción/metabolismo
9.
Breast Cancer Res ; 24(1): 2, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983606

RESUMEN

BACKGROUND: Genome-wide association studies (GWAS) have identified multiple common breast cancer susceptibility variants. Many of these variants have differential associations by estrogen receptor (ER) status, but how these variants relate with other tumor features and intrinsic molecular subtypes is unclear. METHODS: Among 106,571 invasive breast cancer cases and 95,762 controls of European ancestry with data on 173 breast cancer variants identified in previous GWAS, we used novel two-stage polytomous logistic regression models to evaluate variants in relation to multiple tumor features (ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and grade) adjusting for each other, and to intrinsic-like subtypes. RESULTS: Eighty-five of 173 variants were associated with at least one tumor feature (false discovery rate < 5%), most commonly ER and grade, followed by PR and HER2. Models for intrinsic-like subtypes found nearly all of these variants (83 of 85) associated at p < 0.05 with risk for at least one luminal-like subtype, and approximately half (41 of 85) of the variants were associated with risk of at least one non-luminal subtype, including 32 variants associated with triple-negative (TN) disease. Ten variants were associated with risk of all subtypes in different magnitude. Five variants were associated with risk of luminal A-like and TN subtypes in opposite directions. CONCLUSION: This report demonstrates a high level of complexity in the etiology heterogeneity of breast cancer susceptibility variants and can inform investigations of subtype-specific risk prediction.


Asunto(s)
Neoplasias de la Mama , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Riesgo
10.
Am J Hum Genet ; 104(1): 21-34, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30554720

RESUMEN

Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.


Asunto(s)
Neoplasias de la Mama/clasificación , Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Herencia Multifactorial/genética , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/prevención & control , Femenino , Humanos , Anamnesis , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Receptores de Estrógenos/metabolismo , Reproducibilidad de los Resultados , Medición de Riesgo
11.
Genome Res ; 29(3): 356-366, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30692147

RESUMEN

Circular RNAs (circRNAs) are a class of RNAs that is under increasing scrutiny, although their functional roles are debated. We analyzed RNA-seq data of 348 primary breast cancers and developed a method to identify circRNAs that does not rely on unmapped reads or known splice junctions. We identified 95,843 circRNAs, of which 20,441 were found recurrently. Of the circRNAs that match exon boundaries of the same gene, 668 showed a poor or even negative (R < 0.2) correlation with the expression level of the linear gene. In silico analysis showed only a minority (8.5%) of circRNAs could be explained by known splicing events. Both these observations suggest that specific regulatory processes for circRNAs exist. We confirmed the presence of circRNAs of CNOT2, CREBBP, and RERE in an independent pool of primary breast cancers. We identified circRNA profiles associated with subgroups of breast cancers and with biological and clinical features, such as amount of tumor lymphocytic infiltrate and proliferation index. siRNA-mediated knockdown of circCNOT2 was shown to significantly reduce viability of the breast cancer cell lines MCF-7 and BT-474, further underlining the biological relevance of circRNAs. Furthermore, we found that circular, and not linear, CNOT2 levels are predictive for progression-free survival time to aromatase inhibitor (AI) therapy in advanced breast cancer patients, and found that circCNOT2 is detectable in cell-free RNA from plasma. We showed that circRNAs are abundantly present, show characteristics of being specifically regulated, are associated with clinical and biological properties, and thus are relevant in breast cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , ARN/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Femenino , Humanos , Metástasis Linfática , Células MCF-7 , ARN/metabolismo , ARN Circular , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcriptoma
12.
Int J Cancer ; 147(9): 2515-2525, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32488909

RESUMEN

Antiangiogenic drugs are potentially a useful supplement to neoadjuvant chemotherapy for a subgroup of patients with human epidermal growth factor receptor 2 (HER2) negative breast cancer, but reliable biomarkers for improved response are lacking. Here, we report on a randomized phase II clinical trial to study the added effect of bevacizumab in neoadjuvant chemotherapy with FEC100 (5-fluorouracil, epirubicin and cyclophosphamide) and taxanes (n = 132 patients). Gene expression from the tumors was obtained before neoadjuvant treatment, and treatment response was evaluated by residual cancer burden (RCB) at time of surgery. Bevacizumab increased the proportion of complete responders (RCB class 0) from 5% to 20% among patients with estrogen receptor (ER) positive tumors (P = .02). Treatment with bevacizumab was associated with improved 8-year disease-free survival (P = .03) among the good responders (RCB class 0 or I). Patients treated with paclitaxel (n = 45) responded better than those treated with docetaxel (n = 21; P = .03). Improved treatment response was associated with higher proliferation rate and an immune phenotype characterized by high presence of classically activated M1 macrophages, activated NK cells and memory activated CD4 T cells. Treatment with bevacizumab increased the number of adverse events, including hemorrhage, hypertension, infection and febrile neutropenia, but despite this, the ECOG status was not affected.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Bevacizumab/farmacología , Neoplasias de la Mama/terapia , Terapia Neoadyuvante/métodos , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bevacizumab/uso terapéutico , Mama/citología , Mama/patología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Quimioterapia Adyuvante/métodos , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Supervivencia sin Enfermedad , Epirrubicina/farmacología , Epirrubicina/uso terapéutico , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Estudios de Seguimiento , Humanos , Células Asesinas Naturales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Macrófagos/inmunología , Mastectomía , Persona de Mediana Edad , Neoplasia Residual , Noruega/epidemiología , Receptor ErbB-2/análisis , Receptor ErbB-2/metabolismo , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
13.
Acta Oncol ; 59(7): 733-740, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32208873

RESUMEN

Background: In precision cancer medicine, the challenge is to prioritize DNA driver events, account for resistance markers, and procure sufficient information for treatment that maintains patient safety. The MetAction project, exploring how tumor molecular vulnerabilities predict therapy response, first established the required workflow for DNA sequencing and data interpretation (2014-2015). Here, we employed it to identify molecularly matched therapy and recorded outcome in end-stage cancer (2016-2019).Material and methods: Metastatic tissue from 26 patients (16 colorectal cancer cases) was sequenced by the Oncomine assay. The study tumor boards interpreted called variants with respect to sensitivity or resistance to matched therapy and recommended single-agent or combination treatment if considered tolerable. The primary endpoint was the rate of progression-free survival 1.3-fold longer than for the most recent systemic therapy. The objective response rate and overall survival were secondary endpoints.Results: Both common and rare actionable alterations were identified. Thirteen patients were found eligible for therapy following review of tumor sensitivity and resistance variants and patient tolerability. The interventions were inhibitors of ALK/ROS1-, BRAF-, EGFR-, FGFR-, mTOR-, PARP-, or PD-1-mediated signaling for 2-3 cases each. Among 10 patients who received treatment until radiologic evaluation, 6 (46% of the eligible cases) met the primary endpoint. Four colorectal cancer patients (15% of the total study cohort) had objective response. The only serious adverse event was a transient colitis, which appeared in 1 of the 2 patients given PD-1 inhibitor with complete response. Apart from those two, overall survival was similar for patients who did and did not receive study treatment.Conclusions: The systematic MetAction approach may point forward to a refined framework for how to interpret the complexity of sensitivity versus resistance and patient safety that resides in tumor sequence data, for the possibly improved outcome of precision cancer medicine in future studies. ClinicalTrials.gov, identifier: NCT02142036.


Asunto(s)
Carcinoma/tratamiento farmacológico , Carcinoma/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Sarcoma/tratamiento farmacológico , Sarcoma/genética , Adulto , Anciano , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma/secundario , Crizotinib/uso terapéutico , ADN de Neoplasias/análisis , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Irinotecán/administración & dosificación , Masculino , Persona de Mediana Edad , Mutación , Neoplasias/patología , Panitumumab/administración & dosificación , Medicina de Precisión , Supervivencia sin Progresión , Criterios de Evaluación de Respuesta en Tumores Sólidos , Sarcoma/secundario , Análisis de Secuencia de ADN , Transducción de Señal/efectos de los fármacos , Tasa de Supervivencia , Vemurafenib/administración & dosificación , Adulto Joven
14.
Br J Cancer ; 120(6): 647-657, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30787463

RESUMEN

BACKGROUND: We examined the associations between germline variants and breast cancer mortality using a large meta-analysis of women of European ancestry. METHODS: Meta-analyses included summary estimates based on Cox models of twelve datasets using ~10.4 million variants for 96,661 women with breast cancer and 7697 events (breast cancer-specific deaths). Oestrogen receptor (ER)-specific analyses were based on 64,171 ER-positive (4116) and 16,172 ER-negative (2125) patients. We evaluated the probability of a signal to be a true positive using the Bayesian false discovery probability (BFDP). RESULTS: We did not find any variant associated with breast cancer-specific mortality at P < 5 × 10-8. For ER-positive disease, the most significantly associated variant was chr7:rs4717568 (BFDP = 7%, P = 1.28 × 10-7, hazard ratio [HR] = 0.88, 95% confidence interval [CI] = 0.84-0.92); the closest gene is AUTS2. For ER-negative disease, the most significant variant was chr7:rs67918676 (BFDP = 11%, P = 1.38 × 10-7, HR = 1.27, 95% CI = 1.16-1.39); located within a long intergenic non-coding RNA gene (AC004009.3), close to the HOXA gene cluster. CONCLUSIONS: We uncovered germline variants on chromosome 7 at BFDP < 15% close to genes for which there is biological evidence related to breast cancer outcome. However, the paucity of variants associated with mortality at genome-wide significance underpins the challenge in providing genetic-based individualised prognostic information for breast cancer patients.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Teorema de Bayes , Neoplasias de la Mama/metabolismo , Cromosomas Humanos Par 7 , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Pronóstico , Modelos de Riesgos Proporcionales , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Población Blanca/genética
15.
Nature ; 500(7463): 415-21, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23945592

RESUMEN

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


Asunto(s)
Transformación Celular Neoplásica/genética , Mutagénesis/genética , Mutación/genética , Neoplasias/genética , Envejecimiento/genética , Algoritmos , Transformación Celular Neoplásica/patología , Citidina Desaminasa/genética , ADN/genética , ADN/metabolismo , Análisis Mutacional de ADN , Humanos , Modelos Genéticos , Mutagénesis Insercional/genética , Mutágenos/farmacología , Neoplasias/enzimología , Neoplasias/patología , Especificidad de Órganos , Reproducibilidad de los Resultados , Eliminación de Secuencia/genética , Transcripción Genética/genética
16.
Genome Res ; 25(6): 814-24, 2015 06.
Artículo en Inglés | MEDLINE | ID: mdl-25963125

RESUMEN

Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells.


Asunto(s)
ADN Mitocondrial/genética , Genoma Humano , Genoma Mitocondrial/genética , Neoplasias/genética , Secuencia de Aminoácidos , Línea Celular Tumoral , Núcleo Celular/genética , Cromosomas/genética , Variaciones en el Número de Copia de ADN , Reparación del ADN por Unión de Extremidades , Replicación del ADN , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Mitocondrias/genética , Datos de Secuencia Molecular , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
17.
Am J Pathol ; 187(10): 2152-2162, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28733194

RESUMEN

Breast carcinomas can be stratified into different entities based on clinical behavior, histologic features, and/or by biological properties. A classification of breast cancer should be based on underlying biology, which we know must be determined by the somatic genomic landscape of mutations. Moreover, because the latest generations of anticancer agents are founded on biological mechanisms, a detailed molecular stratification is a requirement for appropriate clinical management. Such stratification, based on genomic drivers, will be important for selecting patients for clinical trials. It will also facilitate the discovery of novel drivers, the study of tumor evolution, and the identification of mechanisms of treatment resistance. Assays for risk stratification have focused mainly on response prediction to existing treatment regimens. Molecular stratification based on gene expression profiling revealed that breast cancers could be classified in so-called intrinsic subtypes (luminal A and B, HER2-enriched, basal-like, and normal-like), which mostly corresponded to hormone receptor and HER2 status, and further stratified luminal tumors based on proliferation. The realization that a significant proportion of the gene expression landscape is determined by the somatic copy number alterations that drive expression in cis led to the newer classification of breast cancers into integrative clusters. This stratification of breast cancers into integrative clusters reveals prototypical patterns of single-nucleotide variants and is associated with distinct clinical courses and response to therapy.


Asunto(s)
Neoplasias de la Mama/clasificación , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Análisis Multinivel , Mutación/genética
18.
BMC Cancer ; 18(1): 80, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29338700

RESUMEN

After publication of the original article [1] the authors found that the article contained an incorrect version of Fig. 4. This does not affect the results and conclusions of the article.

19.
PLoS Comput Biol ; 13(9): e1005680, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28957325

RESUMEN

Although systemic immunity is critical to the process of tumor rejection, cancer research has largely focused on immune cells in the tumor microenvironment. To understand molecular changes in the patient systemic response (SR) to the presence of BC, we profiled RNA in blood and matched tumor from 173 patients. We designed a system (MIxT, Matched Interactions Across Tissues) to systematically explore and link molecular processes expressed in each tissue. MIxT confirmed that processes active in the patient SR are especially relevant to BC immunogenicity. The nature of interactions across tissues (i.e. which biological processes are associated and their patterns of expression) varies highly with tumor subtype. For example, aspects of the immune SR are underexpressed proportionally to the level of expression of defined molecular processes specific to basal tumors. The catalog of subtype-specific interactions across tissues from BC patients provides promising new ways to tackle or monitor the disease by exploiting the patient SR.


Asunto(s)
Células Sanguíneas/fisiología , Neoplasias de la Mama/fisiopatología , Microambiente Celular/fisiología , Microambiente Tumoral/fisiología , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Genómica , Humanos , Persona de Mediana Edad , Transducción de Señal , Biología de Sistemas
20.
Nature ; 486(7403): 346-52, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22522925

RESUMEN

The elucidation of breast cancer subgroups and their molecular drivers requires integrated views of the genome and transcriptome from representative numbers of patients. We present an integrated analysis of copy number and gene expression in a discovery and validation set of 997 and 995 primary breast tumours, respectively, with long-term clinical follow-up. Inherited variants (copy number variants and single nucleotide polymorphisms) and acquired somatic copy number aberrations (CNAs) were associated with expression in ~40% of genes, with the landscape dominated by cis- and trans-acting CNAs. By delineating expression outlier genes driven in cis by CNAs, we identified putative cancer genes, including deletions in PPP2R2A, MTAP and MAP2K4. Unsupervised analysis of paired DNA­RNA profiles revealed novel subgroups with distinct clinical outcomes, which reproduced in the validation cohort. These include a high-risk, oestrogen-receptor-positive 11q13/14 cis-acting subgroup and a favourable prognosis subgroup devoid of CNAs. Trans-acting aberration hotspots were found to modulate subgroup-specific gene networks, including a TCR deletion-mediated adaptive immune response in the 'CNA-devoid' subgroup and a basal-specific chromosome 5 deletion-associated mitotic network. Our results provide a novel molecular stratification of the breast cancer population, derived from the impact of somatic CNAs on the transcriptome.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Variaciones en el Número de Copia de ADN/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano/genética , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/diagnóstico , Femenino , Redes Reguladoras de Genes/genética , Genes Relacionados con las Neoplasias/genética , Genómica , Humanos , Estimación de Kaplan-Meier , MAP Quinasa Quinasa 4/genética , Polimorfismo de Nucleótido Simple/genética , Pronóstico , Proteína Fosfatasa 2/genética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA