Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 173(6): 1329-1342.e18, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29731170

RESUMEN

Observational learning is a powerful survival tool allowing individuals to learn about threat-predictive stimuli without directly experiencing the pairing of the predictive cue and punishment. This ability has been linked to the anterior cingulate cortex (ACC) and the basolateral amygdala (BLA). To investigate how information is encoded and transmitted through this circuit, we performed electrophysiological recordings in mice observing a demonstrator mouse undergo associative fear conditioning and found that BLA-projecting ACC (ACC→BLA) neurons preferentially encode socially derived aversive cue information. Inhibition of ACC→BLA alters real-time amygdala representation of the aversive cue during observational conditioning. Selective inhibition of the ACC→BLA projection impaired acquisition, but not expression, of observational fear conditioning. We show that information derived from observation about the aversive value of the cue is transmitted from the ACC to the BLA and that this routing of information is critically instructive for observational fear conditioning. VIDEO ABSTRACT.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Corteza Cerebral/fisiología , Aprendizaje/fisiología , Amígdala del Cerebelo/fisiología , Animales , Conducta Animal , Condicionamiento Clásico , Fenómenos Electrofisiológicos , Miedo , Luz , Masculino , Memoria/fisiología , Ratones , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética , Corteza Prefrontal/fisiología
2.
J Theor Biol ; 509: 110497, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-32966825

RESUMEN

Sleep loss causes decrements in cognitive performance, which increases risks to those in safety-sensitive fields, including medicine and aviation. Mathematical models can be formulated to predict performance decrement in response to sleep loss, with the goal of identifying when an individual may be at highest risk for an accident. This work produces an Ensemble Mixed Effects Model that combines a traditional Linear Mixed Effects (LME) model with a semi-parametric, nonlinear model called Mixed Effects Random Forest (MERF). Using this model, we predict performance on the Psychomotor Vigilance Task (PVT), a test of sustained attention, using biologically motivated features extracted from a dataset containing demographic, sleep, and cognitive test data from 44 healthy participants studied during inpatient sleep loss laboratory experiments. Our Ensemble Mixed Effects Model accurately predicts an individual's trend in PVT performance, and fits the data better than prior published models. The ensemble successfully combines MERF's high rate of peak identification with LME's conservative predictions. We investigate two questions relevant to this model's potential use in operational settings: the tradeoff between additional model features versus ease of collecting these features in real-world settings, and how recent a cognitive task must have been administered to produce strong predictions. This work addresses limitations of previous approaches by developing a predictive model that accounts for interindividual differences and utilizes a nonlinear, semi-parametric method called MERF. We methodologically address the modeling decisions required for this prediction problem, including the choice of cross-validation method. This work is novel in its use of data from a highly-controlled inpatient study protocol that uncouples the influence of the sleep-wake cycle from the endogenous circadian rhythm on the cognitive task being modeled. This uncoupling provides a clearer picture of the model's real-world predictive ability for situations in which people work at different circadian times (e.g., night- or shift-work).


Asunto(s)
Privación de Sueño , Vigilia , Atención , Ritmo Circadiano , Humanos , Desempeño Psicomotor , Sueño
3.
Proc Natl Acad Sci U S A ; 115(1): E5-E14, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255032

RESUMEN

Time series are an important data class that includes recordings ranging from radio emissions, seismic activity, global positioning data, and stock prices to EEG measurements, vital signs, and voice recordings. Rapid growth in sensor and recording technologies is increasing the production of time series data and the importance of rapid, accurate analyses. Time series data are commonly analyzed using time-varying spectral methods to characterize their nonstationary and often oscillatory structure. Current methods provide local estimates of data features. However, they do not offer a statistical inference framework that applies to the entire time series. The important advances that we report are state-space multitaper (SS-MT) methods, which provide a statistical inference framework for time-varying spectral analysis of nonstationary time series. We model nonstationary time series as a sequence of second-order stationary Gaussian processes defined on nonoverlapping intervals. We use a frequency-domain random-walk model to relate the spectral representations of the Gaussian processes across intervals. The SS-MT algorithm efficiently computes spectral updates using parallel 1D complex Kalman filters. An expectation-maximization algorithm computes static and dynamic model parameter estimates. We test the framework in time-varying spectral analyses of simulated time series and EEG recordings from patients receiving general anesthesia. Relative to standard multitaper (MT), SS-MT gave enhanced spectral resolution and noise reduction ([Formula: see text]10 dB) and allowed statistical comparisons of spectral properties among arbitrary time series segments. SS-MT also extracts time-domain estimates of signal components. The SS-MT paradigm is a broadly applicable, empirical Bayes' framework for statistical inference that can help ensure accurate, reproducible findings from nonstationary time series analyses.


Asunto(s)
Algoritmos , Modelos Teóricos , Humanos
4.
J Neurosci ; 38(7): 1601-1607, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29374138

RESUMEN

With ever-increasing advancements in technology, neuroscientists are able to collect data in greater volumes and with finer resolution. The bottleneck in understanding how the brain works is consequently shifting away from the amount and type of data we can collect and toward what we actually do with the data. There has been a growing interest in leveraging this vast volume of data across levels of analysis, measurement techniques, and experimental paradigms to gain more insight into brain function. Such efforts are visible at an international scale, with the emergence of big data neuroscience initiatives, such as the BRAIN initiative (Bargmann et al., 2014), the Human Brain Project, the Human Connectome Project, and the National Institute of Mental Health's Research Domain Criteria initiative. With these large-scale projects, much thought has been given to data-sharing across groups (Poldrack and Gorgolewski, 2014; Sejnowski et al., 2014); however, even with such data-sharing initiatives, funding mechanisms, and infrastructure, there still exists the challenge of how to cohesively integrate all the data. At multiple stages and levels of neuroscience investigation, machine learning holds great promise as an addition to the arsenal of analysis tools for discovering how the brain works.


Asunto(s)
Aprendizaje Automático/tendencias , Neurociencias/tendencias , Animales , Macrodatos , Encéfalo/fisiología , Conectoma , Humanos , Difusión de la Información , Reproducibilidad de los Resultados
5.
Neural Comput ; 30(4): 1046-1079, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29381446

RESUMEN

A fundamental problem in neuroscience is to characterize the dynamics of spiking from the neurons in a circuit that is involved in learning about a stimulus or a contingency. A key limitation of current methods to analyze neural spiking data is the need to collapse neural activity over time or trials, which may cause the loss of information pertinent to understanding the function of a neuron or circuit. We introduce a new method that can determine not only the trial-to-trial dynamics that accompany the learning of a contingency by a neuron, but also the latency of this learning with respect to the onset of a conditioned stimulus. The backbone of the method is a separable two-dimensional (2D) random field (RF) model of neural spike rasters, in which the joint conditional intensity function of a neuron over time and trials depends on two latent Markovian state sequences that evolve separately but in parallel. Classical tools to estimate state-space models cannot be applied readily to our 2D separable RF model. We develop efficient statistical and computational tools to estimate the parameters of the separable 2D RF model. We apply these to data collected from neurons in the prefrontal cortex in an experiment designed to characterize the neural underpinnings of the associative learning of fear in mice. Overall, the separable 2D RF model provides a detailed, interpretable characterization of the dynamics of neural spiking that accompany the learning of a contingency.


Asunto(s)
Potenciales de Acción/fisiología , Aprendizaje por Asociación/fisiología , Cadenas de Markov , Modelos Neurológicos , Neuronas/fisiología , Animales , Simulación por Computador , Miedo/fisiología , Humanos , Funciones de Verosimilitud , Dinámicas no Lineales , Factores de Tiempo
6.
Proc Natl Acad Sci U S A ; 112(23): 7141-6, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-25995363

RESUMEN

The signal-to-noise ratio (SNR), a commonly used measure of fidelity in physical systems, is defined as the ratio of the squared amplitude or variance of a signal relative to the variance of the noise. This definition is not appropriate for neural systems in which spiking activity is more accurately represented as point processes. We show that the SNR estimates a ratio of expected prediction errors and extend the standard definition to one appropriate for single neurons by representing neural spiking activity using point process generalized linear models (PP-GLM). We estimate the prediction errors using the residual deviances from the PP-GLM fits. Because the deviance is an approximate χ(2) random variable, we compute a bias-corrected SNR estimate appropriate for single-neuron analysis and use the bootstrap to assess its uncertainty. In the analyses of four systems neuroscience experiments, we show that the SNRs are -10 dB to -3 dB for guinea pig auditory cortex neurons, -18 dB to -7 dB for rat thalamic neurons, -28 dB to -14 dB for monkey hippocampal neurons, and -29 dB to -20 dB for human subthalamic neurons. The new SNR definition makes explicit in the measure commonly used for physical systems the often-quoted observation that single neurons have low SNRs. The neuron's spiking history is frequently a more informative covariate for predicting spiking propensity than the applied stimulus. Our new SNR definition extends to any GLM system in which the factors modulating the response can be expressed as separate components of a likelihood function.


Asunto(s)
Neuronas/fisiología , Relación Señal-Ruido , Potenciales de Acción , Animales , Corteza Auditiva/citología , Cobayas , Funciones de Verosimilitud
7.
IEEE Signal Process Lett ; 25(12): 1805-1809, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32002009

RESUMEN

Spectral properties of the electroencephalogram (EEG) are commonly analyzed to characterize the brain's oscillatory properties in basic science and clinical neuroscience studies. The spectrum is a function that describes power as a function of frequency. To date inference procedures for spectra have focused on constructing confidence intervals at single frequencies using large sample-based analytic procedures or jackknife techniques. These procedures perform well when the frequencies of interest are chosen before the analysis. When these frequencies are chosen after some of the data have been analyzed, the validity of these conditional inferences is not addressed. If power at more than one frequency is investigated, corrections for multiple comparisons must also be incorporated. To develop a statistical inference approach that considers the spectrum as a function defined across frequencies, we combine multitaper spectral methods with a frequency-domain bootstrap (FDB) procedure. The multitaper method is optimal for minimizing the bias-variance tradeoff in spectral estimation. The FDB makes it possible to conduct Monte Carlo based inferences for any part of the spectrum by drawing random samples that respect the dependence structure in the EEG time series. We show that our multitaper FDB procedure performs well in simulation studies and in analyses comparing EEG recordings of children from two different age groups receiving general anesthesia.

8.
Proc Natl Acad Sci U S A ; 111(50): E5336-45, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25468968

RESUMEN

Classical nonparametric spectral analysis uses sliding windows to capture the dynamic nature of most real-world time series. This universally accepted approach fails to exploit the temporal continuity in the data and is not well-suited for signals with highly structured time-frequency representations. For a time series whose time-varying mean is the superposition of a small number of oscillatory components, we formulate nonparametric batch spectral analysis as a Bayesian estimation problem. We introduce prior distributions on the time-frequency plane that yield maximum a posteriori (MAP) spectral estimates that are continuous in time yet sparse in frequency. Our spectral decomposition procedure, termed spectrotemporal pursuit, can be efficiently computed using an iteratively reweighted least-squares algorithm and scales well with typical data lengths. We show that spectrotemporal pursuit works by applying to the time series a set of data-derived filters. Using a link between Gaussian mixture models, l1 minimization, and the expectation-maximization algorithm, we prove that spectrotemporal pursuit converges to the global MAP estimate. We illustrate our technique on simulated and real human EEG data as well as on human neural spiking activity recorded during loss of consciousness induced by the anesthetic propofol. For the EEG data, our technique yields significantly denoised spectral estimates that have significantly higher time and frequency resolution than multitaper spectral estimates. For the neural spiking data, we obtain a new spectral representation of neuronal firing rates. Spectrotemporal pursuit offers a robust spectral decomposition framework that is a principled alternative to existing methods for decomposing time series into a small number of smooth oscillatory components.


Asunto(s)
Algoritmos , Interpretación Estadística de Datos , Análisis de los Mínimos Cuadrados , Procesamiento de Señales Asistido por Computador , Potenciales de Acción/fisiología , Teorema de Bayes , Electroencefalografía , Humanos , Factores de Tiempo
9.
Anesth Analg ; 123(5): 1210-1219, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26991753

RESUMEN

BACKGROUND: Although emergence from general anesthesia is clinically treated as a passive process driven by the pharmacokinetics of drug clearance, agents that hasten recovery from general anesthesia may be useful for treating delayed emergence, emergence delirium, and postoperative cognitive dysfunction. Activation of central monoaminergic neurotransmission with methylphenidate has been shown to induce reanimation (active emergence) from general anesthesia. Cholinergic neurons in the brainstem and basal forebrain are also known to promote arousal. The objective of this study was to test the hypothesis that physostigmine, a centrally acting cholinesterase inhibitor, induces reanimation from isoflurane anesthesia in adult rats. METHODS: The dose-dependent effects of physostigmine on time to emergence from a standardized isoflurane general anesthetic were tested. It was then determined whether physostigmine restores righting during continuous isoflurane anesthesia. In a separate group of rats with implanted extradural electrodes, physostigmine was administered during continuous inhalation of 1.0% isoflurane, and the electroencephalogram changes were recorded. Finally, 2.0% isoflurane was used to induce burst suppression, and the effects of physostigmine and methylphenidate on burst suppression probability (BSP) were tested. RESULTS: Physostigmine delayed time to emergence from isoflurane anesthesia at doses ≥0.2 mg/kg (n = 9). During continuous isoflurane anesthesia (0.9% ± 0.1%), physostigmine did not restore righting (n = 9). Blocking the peripheral side effects of physostigmine with the coadministration of glycopyrrolate (a muscarinic antagonist that does not cross the blood-brain barrier) produced similar results (n = 9 each). However, during inhalation of 1.0% isoflurane, physostigmine shifted peak electroencephalogram power from δ (<4 Hz) to θ (4-8 Hz) in 6 of 6 rats. During continuous 2.0% isoflurane anesthesia, physostigmine induced large, statistically significant decreases in BSP in 6 of 6 rats, whereas methylphenidate did not. CONCLUSIONS: Unlike methylphenidate, physostigmine does not accelerate time to emergence from isoflurane anesthesia and does not restore righting during continuous isoflurane anesthesia. However, physostigmine consistently decreases BSP during deep isoflurane anesthesia, whereas methylphenidate does not. These findings suggest that activation of cholinergic neurotransmission during isoflurane anesthesia produces arousal states that are distinct from those induced by monoaminergic activation.


Asunto(s)
Anestesia General/métodos , Nivel de Alerta/efectos de los fármacos , Isoflurano/administración & dosificación , Metilfenidato/administración & dosificación , Fisostigmina/administración & dosificación , Anestésicos por Inhalación/administración & dosificación , Animales , Nivel de Alerta/fisiología , Inhibidores de la Colinesterasa/administración & dosificación , Relación Dosis-Respuesta a Droga , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Infusiones Intravenosas , Masculino , Ratas , Ratas Sprague-Dawley
10.
Neural Comput ; 26(2): 237-63, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24206384

RESUMEN

Likelihood-based encoding models founded on point processes have received significant attention in the literature because of their ability to reveal the information encoded by spiking neural populations. We propose an approximation to the likelihood of a point-process model of neurons that holds under assumptions about the continuous time process that are physiologically reasonable for neural spike trains: the presence of a refractory period, the predictability of the conditional intensity function, and its integrability. These are properties that apply to a large class of point processes arising in applications other than neuroscience. The proposed approach has several advantages over conventional ones. In particular, one can use standard fitting procedures for generalized linear models based on iteratively reweighted least squares while improving the accuracy of the approximation to the likelihood and reducing bias in the estimation of the parameters of the underlying continuous-time model. As a result, the proposed approach can use a larger bin size to achieve the same accuracy as conventional approaches would with a smaller bin size. This is particularly important when analyzing neural data with high mean and instantaneous firing rates. We demonstrate these claims on simulated and real neural spiking activity. By allowing a substantive increase in the required bin size, our algorithm has the potential to lower the barrier to the use of point-process methods in an increasing number of applications.


Asunto(s)
Potenciales de Acción , Funciones de Verosimilitud , Modelos Neurológicos , Periodo Refractario Electrofisiológico , Potenciales de Acción/fisiología , Periodo Refractario Electrofisiológico/fisiología
11.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38260512

RESUMEN

The widespread adoption of deep learning to build models that capture the dynamics of neural populations is typically based on "black-box" approaches that lack an interpretable link between neural activity and function. Here, we propose to apply algorithm unrolling, a method for interpretable deep learning, to design the architecture of sparse deconvolutional neural networks and obtain a direct interpretation of network weights in relation to stimulus-driven single-neuron activity through a generative model. We characterize our method, referred to as deconvolutional unrolled neural learning (DUNL), and show its versatility by applying it to deconvolve single-trial local signals across multiple brain areas and recording modalities. To exemplify use cases of our decomposition method, we uncover multiplexed salience and reward prediction error signals from midbrain dopamine neurons in an unbiased manner, perform simultaneous event detection and characterization in somatosensory thalamus recordings, and characterize the responses of neurons in the piriform cortex. Our work leverages the advances in interpretable deep learning to gain a mechanistic understanding of neural dynamics.

12.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766234

RESUMEN

In neuroscience, understanding how single-neuron firing contributes to distributed neural ensembles is crucial. Traditional methods of analysis have been limited to descriptions of whole population activity, or, when analyzing individual neurons, criteria for response categorization varied significantly across experiments. Current methods lack scalability for large datasets, fail to capture temporal changes and rely on parametric assumptions. There's a need for a robust, scalable, and non-parametric functional clustering approach to capture interpretable dynamics. To address this challenge, we developed a model-based, statistical framework for unsupervised clustering of multiple time series datasets that exhibit nonlinear dynamics into an a-priori-unknown number of parameterized ensembles called Functional Encoding Units (FEUs). FEU outperforms existing techniques in accuracy and benchmark scores. Here, we apply this FEU formalism to single-unit recordings collected during social behaviors in rodents and primates and demonstrate its hypothesis-generating and testing capacities. This novel pipeline serves as an analytic bridge, translating neural ensemble codes across model systems.

13.
IEEE Trans Signal Process ; 62(1): 183-195, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26549965

RESUMEN

In this paper, we study the theoretical properties of a class of iteratively re-weighted least squares (IRLS) algorithms for sparse signal recovery in the presence of noise. We demonstrate a one-to-one correspondence between this class of algorithms and a class of Expectation-Maximization (EM) algorithms for constrained maximum likelihood estimation under a Gaussian scale mixture (GSM) distribution. The IRLS algorithms we consider are parametrized by 0 < ν ≤ 1 and ε > 0. The EM formalism, as well as the connection to GSMs, allow us to establish that the IRLS(ν, ε) algorithms minimize ε-smooth versions of the ℓ ν 'norms'. We leverage EM theory to show that, for each 0 < ν ≤ 1, the limit points of the sequence of IRLS(ν, ε) iterates are stationary point of the ε-smooth ℓ ν 'norm' minimization problem on the constraint set. Finally, we employ techniques from Compressive sampling (CS) theory to show that the class of IRLS(ν, ε) algorithms is stable for each 0 < ν ≤ 1, if the limit point of the iterates coincides the global minimizer. For the case ν = 1, we show that the algorithm converges exponentially fast to a neighborhood of the stationary point, and outline its generalization to super-exponential convergence for ν < 1. We demonstrate our claims via simulation experiments. The simplicity of IRLS, along with the theoretical guarantees provided in this contribution, make a compelling case for its adoption as a standard tool for sparse signal recovery.

14.
Radiat Res ; 197(4): 434-445, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35090025

RESUMEN

With a widely attended virtual kickoff event on January 29, 2021, the National Cancer Institute (NCI) and the Department of Energy (DOE) launched a series of 4 interactive, interdisciplinary workshops-and a final concluding "World Café" on March 29, 2021-focused on advancing computational approaches for predictive oncology in the clinical and research domains of radiation oncology. These events reflect 3,870 human hours of virtual engagement with representation from 8 DOE national laboratories and the Frederick National Laboratory for Cancer Research (FNL), 4 research institutes, 5 cancer centers, 17 medical schools and teaching hospitals, 5 companies, 5 federal agencies, 3 research centers, and 27 universities. Here we summarize the workshops by first describing the background for the workshops. Participants identified twelve key questions-and collaborative parallel ideas-as the focus of work going forward to advance the field. These were then used to define short-term and longer-term "Blue Sky" goals. In addition, the group determined key success factors for predictive oncology in the context of radiation oncology, if not the future of all of medicine. These are: cross-discipline collaboration, targeted talent development, development of mechanistic mathematical and computational models and tools, and access to high-quality multiscale data that bridges mechanisms to phenotype. The workshop participants reported feeling energized and highly motivated to pursue next steps together to address the unmet needs in radiation oncology specifically and in cancer research generally and that NCI and DOE project goals align at the convergence of radiation therapy and advanced computing.


Asunto(s)
Oncología por Radiación , Academias e Institutos , Humanos , National Cancer Institute (U.S.) , Oncología por Radiación/educación , Estados Unidos
15.
IEEE Trans Neural Netw Learn Syst ; 32(6): 2415-2429, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32687471

RESUMEN

We introduce a neural-network architecture, termed the constrained recurrent sparse autoencoder (CRsAE), that solves convolutional dictionary learning problems, thus establishing a link between dictionary learning and neural networks. Specifically, we leverage the interpretation of the alternating-minimization algorithm for dictionary learning as an approximate expectation-maximization algorithm to develop autoencoders that enable the simultaneous training of the dictionary and regularization parameter (ReLU bias). The forward pass of the encoder approximates the sufficient statistics of the E-step as the solution to a sparse coding problem, using an iterative proximal gradient algorithm called FISTA. The encoder can be interpreted either as a recurrent neural network or as a deep residual network, with two-sided ReLU nonlinearities in both cases. The M-step is implemented via a two-stage backpropagation. The first stage relies on a linear decoder applied to the encoder and a norm-squared loss. It parallels the dictionary update step in dictionary learning. The second stage updates the regularization parameter by applying a loss function to the encoder that includes a prior on the parameter motivated by Bayesian statistics. We demonstrate in an image-denoising task that CRsAE learns Gabor-like filters and that the EM-inspired approach for learning biases is superior to the conventional approach. In an application to recordings of electrical activity from the brain, we demonstrate that CRsAE learns realistic spike templates and speeds up the process of identifying spike times by 900× compared with algorithms based on convex optimization.

16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5803-5807, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31947171

RESUMEN

Electroencephalographam (EEG) monitoring of neural activity is widely used for identifying underlying brain states. For inference of brain states, researchers have often used Hidden Markov Models (HMM) with a fixed number of hidden states and an observation model linking the temporal dynamics embedded in EEG to the hidden states. The use of fixed states may be limiting, in that 1) pre-defined states might not capture the heterogeneous neural dynamics across individuals and 2) the oscillatory dynamics of the neural activity are not directly modeled. To this end, we use a Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM), which discovers the set of hidden states that best describes the EEG data, without a-priori specification of state number. In addition, we introduce an observation model based on classical asymptotic results of frequency domain properties of stationary time series, along with the description of the conditional distributions for Gibbs sampler inference. We then combine this with multitaper spectral estimation to reduce the variance of the spectral estimates. By applying our method to simulated data inspired by sleep EEG, we arrive at two main results: 1) the algorithm faithfully recovers the spectral characteristics of the true states, as well as the right number of states and 2) the incorporation of the multitaper framework produces a more stable estimate than traditional periodogram spectral estimates.


Asunto(s)
Encéfalo , Electroencefalografía , Algoritmos , Humanos , Cadenas de Markov , Sueño
17.
J Neurosci Methods ; 307: 175-187, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29679704

RESUMEN

BACKGROUND: The study of learning in populations of subjects can provide insights into the changes that occur in the brain with aging, drug intervention, and psychiatric disease. NEW METHOD: We introduce a separable two-dimensional (2D) random field (RF) model for analyzing binary response data acquired during the learning of object-reward associations across multiple days. The method can quantify the variability of performance within a day and across days, and can capture abrupt changes in learning. RESULTS: We apply the method to data from young and aged macaque monkeys performing a reversal-learning task. The method provides an estimate of performance within a day for each age group, and a learning rate across days for each monkey. We find that, as a group, the older monkeys require more trials to learn the object discriminations than do the young monkeys, and that the cognitive flexibility of the younger group is higher. We also use the model estimates of performance as features for clustering the monkeys into two groups. The clustering results in two groups that, for the most part, coincide with those formed by the age groups. Simulation studies suggest that clustering captures inter-individual differences in performance levels. COMPARISON WITH EXISTING METHOD(S): In comparison with generalized linear models, this method is better able to capture the inherent two-dimensional nature of the data and find between group differences. CONCLUSIONS: Applied to binary response data from groups of individuals performing multi-day behavioral experiments, the model discriminates between-group differences and identifies subgroups.


Asunto(s)
Envejecimiento/fisiología , Cognición/fisiología , Discriminación en Psicología/fisiología , Aprendizaje Inverso/fisiología , Recompensa , Animales , Femenino , Macaca mulatta , Cadenas de Markov , Dinámicas no Lineales
18.
Artículo en Inglés | MEDLINE | ID: mdl-24575001

RESUMEN

Understanding how ensembles of neurons represent and transmit information in the patterns of their joint spiking activity is a fundamental question in computational neuroscience. At present, analyses of spiking activity from neuronal ensembles are limited because multivariate point process (MPP) models cannot represent simultaneous occurrences of spike events at an arbitrarily small time resolution. Solo recently reported a simultaneous-event multivariate point process (SEMPP) model to correct this key limitation. In this paper, we show how Solo's discrete-time formulation of the SEMPP model can be efficiently fit to ensemble neural spiking activity using a multinomial generalized linear model (mGLM). Unlike existing approximate procedures for fitting the discrete-time SEMPP model, the mGLM is an exact algorithm. The MPP time-rescaling theorem can be used to assess model goodness-of-fit. We also derive a new marked point-process (MkPP) representation of the SEMPP model that leads to new thinning and time-rescaling algorithms for simulating an SEMPP stochastic process. These algorithms are much simpler than multivariate extensions of algorithms for simulating a univariate point process, and could not be arrived at without the MkPP representation. We illustrate the versatility of the SEMPP model by analyzing neural spiking activity from pairs of simultaneously-recorded rat thalamic neurons stimulated by periodic whisker deflections, and by simulating SEMPP data. In the data analysis example, the SEMPP model demonstrates that whisker motion significantly modulates simultaneous spiking activity at the 1 ms time scale and that the stimulus effect is more than one order of magnitude greater for simultaneous activity compared with non-simultaneous activity. Together, the mGLM, the MPP time-rescaling theorem and the MkPP representation of the SEMPP model offer a theoretically sound, practical tool for measuring joint spiking propensity in a neuronal ensemble.

19.
Artículo en Inglés | MEDLINE | ID: mdl-23898262

RESUMEN

Ising models are routinely used to quantify the second order, functional structure of neural populations. With some recent exceptions, they generally do not include the influence of time varying stimulus drive. Yet if the dynamics of network function are to be understood, time varying stimuli must be taken into account. Inclusion of stimulus drive carries a heavy computational burden because the partition function becomes stimulus dependent and must be separately calculated for all unique stimuli observed. This potentially increases computation time by the length of the data set. Here we present an extremely fast, yet simply implemented, method for approximating the stimulus dependent partition function in minutes or seconds. Noting that the most probable spike patterns (which are few) occur in the training data, we sum partition function terms corresponding to those patterns explicitly. We then approximate the sum over the remaining patterns (which are improbable, but many) by casting it in terms of the stimulus modulated missing mass (total stimulus dependent probability of all patterns not observed in the training data). We use a product of conditioned logistic regression models to approximate the stimulus modulated missing mass. This method has complexity of roughly O(LNNpat) where is L the data length, N the number of neurons and N pat the number of unique patterns in the data, contrasting with the O(L2 (N) ) complexity of alternate methods. Using multiple unit recordings from rat hippocampus, macaque DLPFC and cat Area 18 we demonstrate our method requires orders of magnitude less computation time than Monte Carlo methods and can approximate the stimulus driven partition function more accurately than either Monte Carlo methods or deterministic approximations. This advance allows stimuli to be easily included in Ising models making them suitable for studying population based stimulus encoding.

20.
Artículo en Inglés | MEDLINE | ID: mdl-19965032

RESUMEN

Identification of multiple simultaneously recorded neural spike train recordings is an important task in understanding neuronal dependency, functional connectivity, and temporal causality in neural systems. An assessment of the functional connectivity in a group of ensemble cells was performed using a regularized point process generalized linear model (GLM) that incorporates temporal smoothness or contiguity of the solution. An efficient convex optimization algorithm was then developed for the regularized solution. The point process model was applied to an ensemble of neurons recorded from the cat motor cortex during a skilled reaching task. The implications of this analysis to the coding of skilled movement in primary motor cortex is discussed.


Asunto(s)
Algoritmos , Corteza Motora/fisiología , Animales , Gatos , Modelos Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA