Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901804

RESUMEN

RNAs originating from mitochondrial genomes are abundant in transcriptomic datasets produced by high-throughput sequencing technologies, primarily in short-read outputs. Specific features of mitochondrial small RNAs (mt-sRNAs), such as non-templated additions, presence of length variants, sequence variants, and other modifications, necessitate the need for the development of an appropriate tool for their effective identification and annotation. We have developed mtR_find, a tool to detect and annotate mitochondrial RNAs, including mt-sRNAs and mitochondria-derived long non-coding RNAs (mt-lncRNA). mtR_find uses a novel method to compute the count of RNA sequences from adapter-trimmed reads. When analyzing the published datasets with mtR_find, we identified mt-sRNAs significantly associated with the health conditions, such as hepatocellular carcinoma and obesity, and we discovered novel mt-sRNAs. Furthermore, we identified mt-lncRNAs in early development in mice. These examples show the immediate impact of miR_find in extracting a novel biological information from the existing sequencing datasets. For benchmarking, the tool has been tested on a simulated dataset and the results were concordant. For accurate annotation of mitochondria-derived RNA, particularly mt-sRNA, we developed an appropriate nomenclature. mtR_find encompasses the mt-ncRNA transcriptomes in unpreceded resolution and simplicity, allowing re-analysis of the existing transcriptomic databases and the use of mt-ncRNAs as diagnostic or prognostic markers in the field of medicine.


Asunto(s)
Genoma Mitocondrial , Animales , Ratones , Anotación de Secuencia Molecular , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica , ARN Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento
2.
RNA ; 26(12): 1919-1934, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32912962

RESUMEN

During zebrafish development, an early type of rRNA is gradually replaced by a late type that is substantially different in sequence. We applied RiboMeth-seq to rRNA from developmental stages for profiling of 2'-O-Me, to learn if changes in methylation pattern were a component of the shift. We compiled a catalog of 2'-O-Me sites and cognate box C/D guide RNAs comprising 98 high-confidence sites, including 10 sites that were not known from other vertebrates, one of which was specific to late-type rRNA. We identified a subset of sites that changed in methylation status during development and found that some of these could be explained by availability of their cognate SNORDs. Sites that changed during development were enriched in the novel sites revealed in zebrafish. We propose that the early type of rRNA is a specialized form and that its structure and ribose methylation pattern may be an adaptation to features of development, including translation of specific maternal mRNAs.


Asunto(s)
ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/metabolismo , Ribosa/química , Ribosomas/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Secuencia de Bases , Biología Computacional , Metilación , Conformación de Ácido Nucleico , ARN Ribosómico/genética , ARN Nucleolar Pequeño/genética , Ribosa/genética , Ribosa/metabolismo , Ribosomas/genética , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Fish Physiol Biochem ; 47(2): 327-338, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33405059

RESUMEN

Studying biology of sperm provides valuable information to optimize artificial reproduction and is crucial for sustainable aquaculture. Here, we investigated morphology of spermatozoon in Atlantic cod (Gadus morhua) using transmission and scanning electron microscopy. Furthermore, spermatozoa motility kinetics at different osmolalities were studied using computer-assisted sperm analysis software. The spermatozoon lacked an acrosome and consisted of a head, midpiece, and flagellum. The head of spermatozoa was round, oval, and rather elongated in shape, showing high variations in dimensions. There were up to 6 mitochondria that encircled the proximal part of the flagellum. The proximal and distal centrioles were located within the nuclear notch and arranged orthogonal to each other. The axoneme had a typical 9 + 2 microtubule structure. The flagellar length of spermatozoon was 66.94 ± 0.46 µm. Spermatozoa were immotile in the seminal plasma. Dilution of sperm with natural seawater (1100 mOsmol/kg) resulted in initiation of motility for 91.0 ± 3.4% of spermatozoa with average velocity of 86.2 ± 2.3 µm/s and beating frequency of 52 Hz. The duration of spermatozoa motility was > 6 min; however, the percentage of motile spermatozoa decreased at 60 s post-activation. When osmolality of natural seawater was modified using distilled water or NaCl, spermatozoa motility was not initiated at ≤ 400 and ≥ 2500 mOsmol/kg, and the highest percentage of motility was observed at 730-1580 mOsmol/kg. In a sucrose solution, spermatozoa motility was initiated and suppressed at 600 and 1500 mOsmol/kg, respectively, and highest percentage of motility was observed at 800-1100 mOsmol/kg. Spermatozoon morphology comparisons within Gadiformes showed differences in dimensions of head and mitochondria, flagellar length, and number of mitochondria. The present study provides valuable data that can be used for phylogenetic implications based on spermatozoon morphology and for development of artificial fertilization and sperm cryopreservation protocols based on sperm motility.


Asunto(s)
Gadus morhua/fisiología , Motilidad Espermática/fisiología , Espermatozoides/ultraestructura , Animales , Masculino , Concentración Osmolar , Espermatozoides/fisiología
4.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326572

RESUMEN

The origin and contribution of seminal plasma RNAs into the whole semen RNA repertoire are poorly known, frequently being overlooked or neglected. In this study, we used high-throughput sequencing and RT-qPCR to profile microRNA (miRNA) constituents in the whole semen, as well as in fractionated spermatozoa and seminal plasma of Atlantic salmon (Salmo salar). We found 85 differentially accumulated miRNAs between spermatozoa and the seminal plasma. We identified a number of seminal plasma-enriched and spermatozoa-enriched miRNAs. We localized the expression of some miRNAs in juvenile and mature testes. Two abundant miRNAs, miR-92a-3p and miR-202-5p, localized to both spermatogonia and somatic supporting cells in immature testis, and they were also highly abundant in somatic cells in mature testis. miR-15c-5p, miR-30d-5p, miR-93a-5p, and miR-730-5p were detected only in mature testis. miRs 92a-3p, 202-5p, 15c-5p, and 30d-5p were also detected in a juvenile ovary. The RT-qPCR experiment demonstrated lack of correlation in miRNA transcript levels in seminal plasma versus blood plasma. Our results indicate that salmon semen is rich in miRNAs, which are present in both spermatozoa and seminal plasma. Testicular-supporting somatic cells are likely the source of seminal plasma enrichment, whereas blood plasma is unlikely to contribute to the seminal plasma miRNA repertoire.


Asunto(s)
MicroARNs/genética , Salmo salar/genética , Semen/metabolismo , Espermatogénesis/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Análisis por Conglomerados , Femenino , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , MicroARNs/sangre , MicroARNs/metabolismo , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Salmo salar/sangre , Salmo salar/metabolismo , Testículo/crecimiento & desarrollo
5.
BMC Genomics ; 20(1): 315, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31014241

RESUMEN

BACKGROUND: Early development of an oviparous organism is based on maternally stocked structural, nutritional and regulatory components. These components influence the future developmental potential of an embryo, which is referred to as egg quality. Until zygotic genome activation, translational activity in a fish early embryo is limited to parentally inherited transcripts only. In this study, we asked whether egg transcriptome is associated with egg quality in Atlantic salmon (Salmo salar), which is capable of storing ovulated eggs in its abdominal cavity for a long time before spawning. RESULTS: We analyzed messenger RNA (mRNA) and micro RNA (miRNA) transcriptomes throughout the post-ovulatory egg retention period in batches of eggs from two quality groups, good and poor, classified based on the future developmental performance. We identified 28,551 protein-coding genes and 125 microRNA families, with 200 mRNAs and 5 miRNAs showing differential abundance between egg quality groups and/or among postovulatory ages. Transcriptome dynamics during the egg retention period was different in the two egg quality groups. We identified only a single gene, hepcidin-1, as a potential marker for Atlantic salmon egg quality evaluation. CONCLUSION: The overlapping effect of post-ovulatory age on intrinsic egg developmental competence makes the quantification of egg quality difficult when based on transcripts abundance only.


Asunto(s)
Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Madres , Ovulación , Salmo salar/embriología , Salmo salar/genética , Animales , MicroARNs/genética , ARN Mensajero/genética
6.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861170

RESUMEN

Zebrafish is a well-recognized organism for investigating vertebrate development and human diseases. However, the data on zebrafish proteome are scarce, particularly during embryogenesis. This is mostly due to the overwhelming abundance of egg yolk proteins, which tend to mask the detectable presence of less abundant proteins. We developed an efficient procedure to reduce the amount of yolk in zebrafish early embryos to improve the Liquid chromatography-tandem mass spectrometry (LC-MS)-based shotgun proteomics analysis. We demonstrated that the deyolking procedure resulted in a greater number of proteins being identified. This protocol resulted in approximately 2-fold increase in the number of proteins identified in deyolked samples at cleavage stages, and the number of identified proteins increased greatly by 3-4 times compared to non-deyolked samples in both oblong and bud stages. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed a high number of functional proteins differentially accumulated in the deyolked versus non-deyolked samples. The most prominent enrichments after the deyolking procedure included processes, functions, and components related to cellular organization, cell cycle, control of replication and translation, and mitochondrial functions. This deyolking procedure improves both qualitative and quantitative proteome analyses and provides an innovative tool in molecular embryogenesis of polylecithal animals, such as fish, amphibians, reptiles, or birds.


Asunto(s)
Embrión no Mamífero/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Cromatografía Liquida/métodos , Proteínas del Huevo/metabolismo , Yema de Huevo/metabolismo , Embrión no Mamífero/embriología , Humanos , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos , Pez Cebra/embriología
7.
Reproduction ; 152(5): 507-17, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27655215

RESUMEN

Zebrafish are an important model species in developmental biology. However, their potential in reproductive biology research has yet to be realized. In this study, we established See-Thru-Gonad zebrafish, a transparent line with fluorescently labeled germ cells visible throughout the life cycle, validated its gonadal development features, and demonstrated its applicability by performing a targeted gene knockdown experiment using vivo-morpholinos (VMOs). To establish the line, we crossed the zf45Tg and mitfa(w2/w2); mpv17(b18/b18) zebrafish lines. We documented the in vivo visibility of the germline-specific fluorescent signal throughout development, from gametes through embryonic and juvenile stages up to sexual maturity, and validated gonadal development with histology. We performed targeted gene knockdown of the microRNA (miRNA) miR-92a-3p through injection of VMOs directly to maturing ovaries. After the treatment, zebrafish were bred naturally. Embryos from miR-92a-3p knockdown ovaries had a significant reduction in relative miR-92a-3p expression and a higher percentage of developmental arrest at the 1-cell stage as compared with 5-base mismatch-treated controls. The experiment demonstrates that See-Thru-Gonad line can be successfully used for vertical transmission of the effects of targeted gene knockdown in ovaries into their offspring.


Asunto(s)
Embrión no Mamífero/citología , Colorantes Fluorescentes/metabolismo , Células Germinativas/citología , Gónadas/crecimiento & desarrollo , Gónadas/metabolismo , MicroARNs/genética , Pez Cebra/fisiología , Animales , Células Cultivadas , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/metabolismo , Estadios del Ciclo de Vida
8.
Br J Nutr ; 115(7): 1145-54, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26857476

RESUMEN

To our knowledge, there is no report on microRNA (miRNA) expression and their target analysis in relation to the type of the first feed and its effect on the further growth of fish. Atlantic cod (Gadus morhua) larvae have better growth and development performance when fed natural zooplankton as a start-feed, as compared with those fed typical aquaculture start-feeds. In our experiment, two groups of Atlantic cod larvae were fed reference feed (zooplankton, mostly copepods, filtered from a seawater pond) v. aquaculture feeds: enriched rotifers (Brachionus sp.) and later brine shrimp (Artemia salina). We examined the miRNA expressions of six defined developmental stages as determined and standardised by body length from first feeding for both diet groups. We found eight miRNA (miR-9, miR-19a, miR-130b, miR-146, miR-181a, miR-192, miR-206 and miR-11240) differentially expressed between the two feeding groups in at least one developmental stage. We verified the next-generation sequencing data using real-time RT-PCR. We found 397 putative targets (mRNA) to the differentially expressed miRNA; eighteen of these mRNA showed differential expression in at least one stage. The patterns of differentially expressed miRNA and their putative target mRNA were mostly inverse, but sometimes also concurrent. The predicted miRNA targets were involved in different pathways, including metabolic, phototransduction and signalling pathways. The results of this study provide new nutrigenomic information on the potential role of miRNA in mediating nutritional effects on growth during the start-feeding period in fish larvae.


Asunto(s)
Alimentación Animal , Animales , Acuicultura/métodos , Artemia , Dieta , Gadus morhua/genética , Gadus morhua/crecimiento & desarrollo , Gadus morhua/fisiología , Expresión Génica/fisiología , Larva/genética , Larva/crecimiento & desarrollo , MicroARNs/genética , MicroARNs/fisiología , Nutrigenómica , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Rotíferos , Zooplancton
9.
BMC Genomics ; 16: 305, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25881242

RESUMEN

BACKGROUND: Environmental temperature has serious implications in life cycle of aquatic ectotherms. Understanding the molecular mechanisms of temperature acclimation and adaptation of marine organisms is of the uttermost importance for ecology, fisheries, and aquaculture, as it allows modeling the effects of global warming on population dynamics. Regulatory molecules are major modulators of acclimation and adaptation; among them, microRNAs (miRNAs) are versatile and substantial contributors to regulatory networks of development and adaptive plasticity. However, their role in thermal plasticity is poorly known. We have asked whether the temperature and its shift during the early ontogeny (embryonic and larval development) affect the miRNA repertoire of Atlantic cod (Gadus morhua), and if thermal experience has long-term consequences in the miRNA profile. RESULTS: We characterized miRNA during different developmental stages and in juvenile tissues using next generation sequencing. We identified 389 putative miRNA precursor loci, 120 novel precursor miRNAs, and 281 mature miRNAs. Some miRNAs showed stage- or tissue-enriched expression and miRNAs, such as the miR-17 ~ 92 cluster, myomiRs (miR-206), neuromiRs (miR-9, miR-124), miR-130b, and miR-430 showed differential expression in different temperature regimes. Long-term effect of embryonic incubation temperature was revealed on expression of some miRNAs in juvenile pituitary (miR-449), gonad (miR-27c, miR-30c, and miR-200a), and liver (let-7 h, miR-7a, miR-22, miR-34c, miR-132a, miR-192, miR-221, miR-451, miR-2188, and miR-7550), but not in brain. Some of differentially expressed miRNAs in the liver were confirmed using LNA-based rt-qPCR. The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive. CONCLUSIONS: Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term. Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod.


Asunto(s)
Gadus morhua/genética , MicroARNs/biosíntesis , Temperatura , Animales , Embrión no Mamífero , Desarrollo Embrionario/genética , Gadus morhua/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética
10.
BMC Genomics ; 15: 829, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25269745

RESUMEN

BACKGROUND: Commercial Atlantic halibut (Hippoglossus hippoglossus) farming is restricted by variable oocyte quality, slow growth, and early maturation of male fish. Maternally transferred components regulate early developmental processes; therefore, they have an effect on the future viability of the embryo. Using a newly developed Agilent 10 k custom-made oligonucleotide array, we profiled components of the transcriptome involved in immune defence as well as germline and muscle development during early developmental stages: 8-cell embryos (8CS), germ ring stage (GR), 10-somite stage (10SS), and hatched embryos (HT). In addition, we identified differentially expressed transcripts in low (≤9 ± 3% hatching) and high (≥86 ± 3°% hatching) quality eggs at 8CS to identify potential maternal markers for embryo quality. RESULTS: Out of 2066 differentially expressed transcripts, 160 were identified as maternal transcripts being specifically expressed at 8CS only. Twenty transcripts were differentially expressed in 8-cell embryos between low and high quality egg groups. Several immune-related transcripts were identified as promising molecular markers of hatching success including interferon regulatory factor 7 and mhc class 2A chain. Differential expression was positively validated with quantitative real-time PCR. CONCLUSIONS: We have demonstrated maternal transfer of innate and adaptive immune system transcripts into Atlantic halibut embryos and their relation with future embryo developmental potential. We identified several transcripts as potential molecular markers of embryo quality. The developed microarray represents a useful resource for improving the commercial production of Atlantic halibut.


Asunto(s)
Embrión no Mamífero/metabolismo , Inmunidad Adaptativa , Animales , Biomarcadores/metabolismo , Análisis por Conglomerados , Desarrollo Embrionario/genética , Lenguado/genética , Lenguado/crecimiento & desarrollo , Perfilación de la Expresión Génica , Células Germinativas/metabolismo , Inmunidad Innata/genética , Factor 7 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/metabolismo , Desarrollo de Músculos/genética , Músculos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Óvulo/metabolismo , Transcriptoma
11.
Mol Biol Rep ; 41(10): 6679-89, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24993118

RESUMEN

The notion that the circadian rhythm is exclusively regulated by a central clock has been challenged by the discovery of peripheral oscillators. These peripheral clocks are known to have a direct influence on the biological processes in a tissue or cell. In fish, several peripheral clocks respond directly to light, thus raising the hypothesis of autonomous regulation. Several clock genes are expressed with daily rhythmicity in Atlantic cod (Gadus morhua) fast skeletal muscle. In the present study, myosatellite cell culture and short-term cultured fast skeletal muscle explant models were developed and characterized, in order to investigate the autonomy of the clock system in skeletal muscle of Atlantic cod. Myosatellite cells proliferated and differentiated in vitro, as shown by the changes in cellular and myogenic gene markers. The high expression of myogenic differentiation 1 during the early days post-isolation implied the commitment to myogenic lineage and the increasing mRNA levels of proliferating cell nuclear antigen (pcna) indicated the proliferation of the cells in vitro. Transcript levels of myogenic marker genes such as pcna and myogenin increased during 5 days in culture of skeletal muscle explants, indicating that the muscle cells were proliferating and differentiating under ex vivo conditions. Transcript levels of the clock gene aryl hydrocarbon receptor nuclear translocator-like 2 (arntl2) in myosatellite cells showed no daily oscillation regardless of photoperiod manipulation. On the other hand, mRNA levels of the clock gene circadian locomotor output cycles kaput (clock) showed circadian rhythmicity in 5-day-old skeletal muscle explant under different photoperiod regimes. The expression of arntl2, cryptochrome2 (cry2), period 2a (per2a) and nuclear receptor subfamily 1, group D, member 1 was not rhythmic in muscle explants but photoperiod manipulation had a significant effect on mRNA levels of cry2 and per2a. Taken together, the lack of rhythmicity of molecular clocks in vitro and ex vivo indicate that the putative peripheral clock in Atlantic cod fast skeletal muscle is not likely to be autonomous.


Asunto(s)
Relojes Biológicos/genética , Proteínas CLOCK/genética , Gadus morhua/fisiología , Fibras Musculares de Contracción Rápida/metabolismo , Animales , Células Cultivadas , Ritmo Circadiano/genética , Perfilación de la Expresión Génica , Fotoperiodo
12.
Mol Reprod Dev ; 80(2): 118-31, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23239145

RESUMEN

No information exists on the identification of primordial germ cells (PGCs) in the super-order Protacanthopterygii, which includes the Salmonidae family and Atlantic salmon (Salmo salar L.), one of the most commercially important aquatic animals worldwide. In order to identify salmon PGCs, we cloned the full-length cDNA of vasa, dead end (dnd), and lymphocyte antigen 75 (ly75/CD205) genes as germ cell marker candidates, and analyzed their expression patterns in both adult and embryonic stages of Atlantic salmon. Semi-quantitative RT-PCR results showed that salmon vasa and dnd were specifically expressed in testis and ovary, and vasa, dnd, and ly75 mRNA were maternally deposited in the egg. vasa mRNA was consistently detected throughout embryogenesis while dnd and ly75 mRNA were gradually degraded during cleavages. In situ analysis revealed the localization of vasa and dnd mRNA and Ly75 protein in PGCs of hatched larvae. Whole-mount in situ hybridization detected vasa mRNA during embryogenesis, showing a distribution pattern somewhat different to that of zebrafish; specifically, at mid-blastula stage, vasa-expressing cells were randomly distributed at the central part of blastodisc, and then they migrated to the presumptive region of embryonic shield. Therefore, the typical vasa localization pattern of four clusters during blastulation, as found in zebrafish, was not present in Atlantic salmon. In addition, salmon PGCs could be specifically labeled with a green fluorescence protein (GFP) using gfp-rt-vasa 3'-UTR RNA microinjection for further applications. These findings may assist in understanding PGC development not only in Atlantic salmon but also in other salmonids.


Asunto(s)
Movimiento Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Marcadores Genéticos/genética , Células Germinativas/fisiología , Salmo salar/fisiología , Animales , Antígenos CD/genética , Clonación Molecular , ARN Helicasas DEAD-box/genética , ADN Complementario/genética , Células Germinativas/metabolismo , Gónadas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ/veterinaria , Lectinas Tipo C/genética , Antígenos de Histocompatibilidad Menor , Proteínas de Unión al ARN/genética , Receptores de Superficie Celular/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Especificidad de la Especie , Pez Cebra , Proteínas de Pez Cebra/genética
13.
BMC Genomics ; 13: 11, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22233483

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play a major role in animal ontogenesis. Size variants of miRNAs, isomiRs, are observed along with the main miRNA types, but their origin and possible biological role are uncovered yet. Developmental profiles of miRNAs have been reported in few fish species only and, to our knowledge, differential expressions of isomiRs have not yet been shown during fish development. Atlantic halibut, Hippoglossus hippoglossus L., undergoes dramatic metamorphosis during early development from symmetrical pelagic larval stage to unsymmetrical flatfish. No data exist on role of miRNAs in halibut metamorphosis. RESULTS: miRNA profiling using SOLiD deep sequencing technology revealed a total of 199 conserved, one novel antisense, and one miRNA* mature form. Digital expression profiles of selected miRNAs were validated using reverse transcription quantitative PCR. We found developmental transition-specific miRNA expression. Expression of some miRNA* exceeded the guide strand miRNA. We revealed that nucleotide truncations and/or additions at the 3' end of mature miRNAs resulted in size variants showing differential expression patterns during the development in a number of miRNA families. We confirmed the presence of isomiRs by cloning and Sanger sequencing. Also, we found inverse relationship between expression levels of sense/antisense miRNAs during halibut development. CONCLUSION: Developmental transitions during early development of Atlantic halibut are associated with expression of certain miRNA types. IsomiRs are abundant and often show differential expression during the development.


Asunto(s)
Lenguado/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Animales , Secuencia de Bases , Lenguado/crecimiento & desarrollo , Lenguado/metabolismo , Perfilación de la Expresión Génica , Larva/genética , Larva/metabolismo , MicroARNs/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia
14.
Genes (Basel) ; 13(6)2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35741706

RESUMEN

Group I introns are mobile genetic elements encoding self-splicing ribozymes. Group I introns in nuclear genes are restricted to ribosomal DNA of eukaryotic microorganisms. For example, the myxomycetes, which represent a distinct protist phylum with a unique life strategy, are rich in nucleolar group I introns. We analyzed and compared 75 group I introns at position 516 in the small subunit ribosomal DNA from diverse and distantly related myxomycete taxa. A consensus secondary structure revealed a conserved group IC1 ribozyme core, but with a surprising RNA sequence complexity in the peripheral regions. Five S516 group I introns possess a twintron organization, where a His-Cys homing endonuclease gene insertion was interrupted by a small spliceosomal intron. Eleven S516 introns contained direct repeat arrays with varying lengths of the repeated motif, a varying copy number, and different structural organizations. Phylogenetic analyses of S516 introns and the corresponding host genes revealed a complex inheritance pattern, with both vertical and horizontal transfers. Finally, we reconstructed the evolutionary history of S516 nucleolar group I introns from insertion of mobile-type introns at unoccupied cognate sites, through homing endonuclease gene degradation and loss, and finally to the complete loss of introns. We conclude that myxomycete S516 introns represent a family of genetic elements with surprisingly dynamic structures despite a common function in RNA self-splicing.


Asunto(s)
Mixomicetos , ARN Catalítico , ADN Ribosómico/genética , Endonucleasas/genética , Eucariontes/genética , Intrones/genética , Mixomicetos/genética , Mixomicetos/metabolismo , Filogenia , ARN Catalítico/genética , ARN Catalítico/metabolismo
16.
Artículo en Inglés | MEDLINE | ID: mdl-21281735

RESUMEN

Our objectives were to compare spermatozoa activity, morphology, and seminal plasma (SP) biochemistry between wild and cultivated Atlantic cod (Gadus morhua). Swimming velocities of wild cod spermatozoa were significantly faster than those of cultivated males. Wild males had a significantly larger spermatozoa head area, perimeter, and length, while cultivated males had more circular heads. Total monounsaturated fatty acids and the ratio of n-3/n-6 were significantly higher in sperm from wild males, while total n-6 from cultivated males was significantly higher than the wild males. Significantly higher concentrations of the fatty acids C14:0, C16:1n-7, C18:4n-3, C20:1n-11, C20:1n-9, C20:4n-3, C22:1n-11, and C22:6n-3 were observed in wild males, while significantly higher concentrations of C18:2n-6, C20:2n-6, and C22:5n-3 occurred in cultivated males. Osmolality, protein concentration, lactate dehydrogenase and superoxide dismutase activity of SP of wild males were significantly higher than the cultivated males. Antioxidant capacity of SP was significantly higher in cultivated males, while pH and anti-trypsin did not differ between fish origins. Four bands of anti-trypsin activity and nine protein bands were detected in SP. Performing a discriminant function analysis, on morphology and fatty acid data showed significant discrimination between wild and cultivated fish. Results are relevant to breeding programs and aquaculture development.


Asunto(s)
Gadus morhua/fisiología , Semen/metabolismo , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Animales , Acuicultura/métodos , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Femenino , Fertilización , Proteínas de Peces/metabolismo , Gadus morhua/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Masculino , Concentración Osmolar , Semen/citología , Espermatozoides/metabolismo , Superóxido Dismutasa/metabolismo
17.
Noncoding RNA ; 7(3)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34449660

RESUMEN

Nuclear group I introns are restricted to the ribosomal DNA locus where they interrupt genes for small subunit and large subunit ribosomal RNAs at conserved sites in some eukaryotic microorganisms. Here, the myxomycete protists are a frequent source of nuclear group I introns due to their unique life strategy and a billion years of separate evolution. The ribosomal DNA of the myxomycete Mucilago crustacea was investigated and found to contain seven group I introns, including a direct repeat-containing intron at insertion site S1389 in the small subunit ribosomal RNA gene. We collected, analyzed, and compared 72 S1389 group IC1 introns representing diverse myxomycete taxa. The consensus secondary structure revealed a conserved ribozyme core, but with surprising sequence variations in the guanosine binding site in segment P7. Some S1389 introns harbored large extension sequences in the peripheral region of segment P9 containing direct repeat arrays. These repeats contained up to 52 copies of a putative internal guide sequence motif. Other S1389 introns harbored homing endonuclease genes in segment P1 encoding His-Cys proteins. Homing endonuclease genes were further interrupted by small spliceosomal introns that have to be removed in order to generate the open reading frames. Phylogenetic analyses of S1389 intron and host gene indicated both vertical and horizontal intron transfer during evolution, and revealed sporadic appearances of direct repeats, homing endonuclease genes, and guanosine binding site variants among the myxomycete taxa.

18.
Sci Rep ; 11(1): 4142, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602989

RESUMEN

Gamma radiation produces DNA instability and impaired phenotype. Previously, we observed negative effects on phenotype, DNA methylation, and gene expression profiles, in offspring of zebrafish exposed to gamma radiation during gametogenesis. We hypothesize that previously observed effects are accompanied with changes in the expression profile of non-coding RNAs, inherited by next generations. Non-coding RNA expression profile was analysed in F1 offspring (5.5 h post-fertilization) by high-throughput sequencing 1 year after parental irradiation (8.7 mGy/h, 5.2 Gy total dose). Using our previous F1-γ genome-wide gene expression data (GSE98539), hundreds of mRNAs were predicted as targets of differentially expressed (DE) miRNAs, involved in pathways such as insulin receptor, NFkB and PTEN signalling, linking to apoptosis and cancer. snRNAs belonging to the five major spliceosomal snRNAs were down-regulated in the F1-γ group, Indicating transcriptional and post-transcriptional alterations. In addition, DEpiRNA clusters were associated to 9 transposable elements (TEs) (LTR, LINE, and TIR) (p = 0.0024), probable as a response to the activation of these TEs. Moreover, the expression of the lincRNAs malat-1, and several others was altered in the offspring F1, in concordance with previously observed phenotypical alterations. In conclusion, our results demonstrate diverse gamma radiation-induced alterations in the ncRNA profiles of F1 offspring observable 1 year after parental irradiation.


Asunto(s)
Rayos gamma/efectos adversos , ARN no Traducido/genética , Pez Cebra/genética , Animales , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Metilación de ADN/genética , Metilación de ADN/efectos de la radiación , Gametogénesis/genética , Gametogénesis/efectos de la radiación , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Transcriptoma/genética , Transcriptoma/efectos de la radiación
19.
Biomolecules ; 10(6)2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521604

RESUMEN

Sequencing datasets available in public repositories are already high in number, and their growth is exponential. Raw sequencing data files constitute a substantial portion of these data, and they need to be pre-processed for any downstream analyses. The removal of adapter sequences is the first essential step. Tools available for the automated detection of adapters in single-read sequencing protocol datasets have certain limitations. To explore these datasets, one needs to retrieve the information on adapter sequences from the methods sections of appropriate research articles. This can be time-consuming in metadata analyses. Moreover, not all research articles provide the information on adapter sequences. We have developed adapt_find, a tool that automates the process of adapter sequences identification in raw single-read sequencing datasets. We have verified adapt_find through testing a number of publicly available datasets. adapt_find secures a robust, reliable and high-throughput process across different sequencing technologies and various adapter designs. It does not need prior knowledge of the adapter sequences. We also produced associated tools: random_mer, for the detection of random N bases either on one or both termini of the reads, and fastqc_parser, for consolidating the results from FASTQC outputs. Together, this is a valuable tool set for metadata analyses on multiple sequencing datasets.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Oligonucleótidos/genética , Análisis de Secuencia de ADN
20.
Artículo en Inglés | MEDLINE | ID: mdl-18302990

RESUMEN

Gene expression studies are fundamental to understand the molecular basis of severe malformations in fish development, particularly under aquaculture conditions. Real-time PCR (qPCR) is the most accurate method of quantifying gene expression, provided that suitable endogenous controls are used to normalize the data. To date, no reference genes have been validated for developmental gene expression studies in Atlantic halibut (Hippoglossus hippoglossus). We have determined the expression profiles of 6 candidate reference genes (Actb, Eef2, Fau, Gapdh, Tubb2 and 18S rRNA) in 6 embryonic and 5 larval stages of Atlantic halibut development. There were significant changes in expression levels throughout development, which stress the importance and complexity of finding appropriate reference genes. The three software applications (BestKeeper, geNorm and NormFinder) used to evaluate the stability of potential reference genes produced comparable results. Tubb2 and Actb were the most stable genes across the different developmental stages, whereas 18S rRNA and Gapdh were the most variable genes and thus inappropriate to use as reference genes. According to geNorm and NormFinder, the best two-gene normalization factors corresponded to the geometric average of Tubb2/Actb and Tbb2/Fau, respectively. We believe that either of these normalization factors can be used for future developmental gene expression studies in Atlantic halibut.


Asunto(s)
Lenguado/crecimiento & desarrollo , Lenguado/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Animales , Océano Atlántico , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Estándares de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA