Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542438

RESUMEN

Schisandra chinensis (Schisandraceae) is a medicinal plant widely used in traditional Chinese medicine. Under the name Wu Wei Zi, it is used to treat many diseases, especially as a stimulant, adaptogen, and hepatoprotective. Dibenzocyclooctadiene lignans are the main compounds responsible for the effect of S. chinensis. As a part of ongoing studies to identify and evaluate anti-inflammatory natural compounds, we isolated a series of dibenzocyclooctadiene lignans and evaluated their biological activity. Furthermore, we isolated new sesquiterpene 7,7-dimethyl-11-methylidenespiro[5.5]undec-2-ene-3-carboxylic acid. Selected dibenzocyclooctadiene lignans were tested to assess their anti-inflammatory potential in LPS-stimulated monocytes by monitoring their anti-NF-κB activity, antioxidant activity in CAA assay, and their effect on gap junction intercellular communication in WB-ras cells. Some S. chinensis lignans showed antioxidant activity in CAA mode and affected the gap junction intercellular communication. The anti-inflammatory activity was proven for (-)-gomisin N, (+)-γ-schisandrin, rubrisandrin A, and (-)-gomisin J.


Asunto(s)
Lignanos , Compuestos Policíclicos , Schisandra , Lignanos/farmacología , Ciclooctanos/farmacología , Antiinflamatorios/farmacología
2.
Molecules ; 27(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566302

RESUMEN

Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs' properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.


Asunto(s)
Ácidos y Sales Biliares , Circulación Enterohepática , Ácidos y Sales Biliares/metabolismo , Conductos Biliares , Proteínas Portadoras/metabolismo , Hígado/metabolismo
3.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445682

RESUMEN

Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Comunicación Celular/fisiología , Uniones Comunicantes/metabolismo , Animales , Bioensayo/métodos , Carcinógenos , Comunicación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Colorantes/metabolismo , Hígado/patología , Microscopía Fluorescente/métodos , Ratas
4.
Toxicol Appl Pharmacol ; 404: 115177, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32739526

RESUMEN

A decline in male fertility possibly caused by environmental contaminants, namely endocrine-disrupting chemicals (EDCs), is a topic of public concern and scientific interest. This study addresses a specific role of testicular gap junctional intercellular communication (GJIC) between adjacent prepubertal Leydig cells in endocrine disruption and male reproductive toxicity. Organochlorine pesticides (lindane, methoxychlor, DDT), industrial chemicals (PCB153, bisphenol A, nonylphenol and octylphenol) as well as personal care product components (triclosan, triclocarban) rapidly dysregulated GJIC in murine Leydig TM3 cells. The selected GJIC-inhibiting EDCs (methoxychlor, triclosan, triclocarban, lindane, DDT) caused the immediate GJIC disruption by the relocation of gap junctional protein connexin 43 (Cx43) from the plasma membrane and the alternation of Cx43 phosphorylation pattern (Ser368, Ser279, Ser282) of its full-length and two N-truncated isoforms. After more prolonged exposure (24 h), EDCs decreased steady-state levels of full-length Cx43 protein and its two N-truncated isoforms, and eventually (triclosan, triclocarban) also tight junction protein Tjp-1. The disturbance of GJIC was accompanied by altered activity of mitogen-activated protein kinases MAPK-Erk1/2 and MAPK-p38, and a decrease in stimulated progesterone production. Our results indicate that EDCs might disrupt testicular homeostasis and development via disruption of testicular GJIC, a dysregulation of junctional and non-junctional functions of Cx43, activation of MAPKs, and disruption of an early stage of steroidogenesis in prepubertal Leydig cells. These critical disturbances of Leydig cell development and functions during a prepubertal period might be contributing to impaired male reproduction health later on.


Asunto(s)
Disruptores Endocrinos/toxicidad , Células Intersticiales del Testículo/efectos de los fármacos , Fenoles/toxicidad , Transducción de Señal/efectos de los fármacos , Animales , Comunicación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Conexina 43/genética , Conexina 43/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Ratones
5.
Int J Mol Sci ; 21(17)2020 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-32842520

RESUMEN

Humans are exposed to phthalates released from plastics, cosmetics, or food on a daily basis. Phthalates have low acute liver toxicity, but their chronic exposures could induce molecular and cellular effects linked to adverse health outcomes, such as liver tumor promotion or chronic liver diseases. The alternation of gap junctional intercellular communication (GJIC) and MAPK-Erk1/2 pathways in liver progenitor or oval cells can disrupt liver tissue homeostatic mechanisms and affect the development and severity of these adverse outcomes. Our study with 20 different phthalates revealed their structurally dependent effects on liver GJIC and MAPK-Erk1/2 signaling in rat liver WB-F344 cell line with characteristics of liver oval cells. The phthalates with a medium-length side chain (3-6 C) were the most potent dysregulators of GJIC and activators of MAPK-Erk1/2. The effects occurred rapidly, suggesting the activation of non-genomic (non-transcriptional) mechanisms directly by the parental compounds. Short-chain phthalates (1-2 C) did not dysregulate GJIC even after longer exposures and did not activate MAPK-Erk1/2. Longer chain (≥7 C) phthalates, such as DEHP or DINP, moderately activated MAPK-Erk1/2, but inhibited GJIC only after prolonged exposures (>12 h), suggesting that GJIC dysregulation occurs via genomic mechanisms, or (bio)transformation. Overall, medium-chain phthalates rapidly affected the key tissue homeostatic mechanisms in the liver oval cell population via non-genomic pathways, which might contribute to the development of chronic liver toxicity and diseases.


Asunto(s)
Hígado/citología , Hígado/efectos de los fármacos , Ácidos Ftálicos/química , Ácidos Ftálicos/toxicidad , Animales , Comunicación Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Uniones Comunicantes/efectos de los fármacos , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ácidos Ftálicos/administración & dosificación , Ratas , Relación Estructura-Actividad
6.
Toxicol Mech Methods ; 30(8): 590-604, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32713235

RESUMEN

3-dimensional (3D) cell cultures are being increasingly recognized as physiologically more relevant in vitro models than traditional monolayer cultures, because they better mimic in vivo-like microenvironment, cell-cell and cell-extracellular matrix interactions. Nevertheless, the broader use of 3D models might be limited by requirements for special consumables, equipment, or skills for 3D cell cultures, and by their limited throughput and scalability. In this study, we optimized and adapted a commercially available agarose-micromolding technique to produce scaffold-free spheroid cultures. Brightfield microscopy was used for routine nondestructive and noninvasive evaluation of spheroid formation and growth. The workflow is compatible with manual, as well as high speed automated microscopic image acquisition, and it is supplemented with an in-house developed macro 'Spheroid_Finder' for open source software Fiji to facilitate rapid automated image analysis. This protocol was used to characterize and quantify spheroid formation and growth of two different hepatic cell lines, hTERT immortalized, but non-cancerous, adult human liver stem cell line HL1-hT1, and human hepatocellular carcinoma cell line HepG2, as well as their responses to a model antiproliferative and cytotoxic agent, 5-fluorouracil. The complete protocol provides a simple and ready-to-use solution to initiate scaffold-free spheroid cultures in any laboratory with standard equipment for mammalian in vitro cell culture work. Thus, it allows to increase throughput and scale of spheroid culture experiments, which can be greatly utilized in different areas of biomedical, pharmaceutical and toxicological research.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Fluorouracilo/farmacología , Ensayos Analíticos de Alto Rendimiento , Neoplasias Hepáticas/tratamiento farmacológico , Hígado/efectos de los fármacos , Células Madre/efectos de los fármacos , Antimetabolitos Antineoplásicos/toxicidad , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fluorouracilo/toxicidad , Células Hep G2 , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Esferoides Celulares , Células Madre/metabolismo , Células Madre/patología , Factores de Tiempo , Pruebas de Toxicidad , Flujo de Trabajo
7.
Toxicol Appl Pharmacol ; 345: 103-113, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29534881

RESUMEN

HL1-hT1 cell line represents adult human liver stem cells (LSCs) immortalized with human telomerase reverse transcriptase. In this study, HL1-hT1 cells were found to express mesenchymal markers (vimentin, CD73, CD90/THY-1 and CD105) and an early hepatic endoderm marker FOXA2, while not expressing hepatic progenitor (HNF4A, LGR5, α-fetoprotein) or differentiated hepatocyte markers (albumin, transthyretin, connexin 32). In response to microcystin-LR (MC-LR), a time- and concentration-dependent formation of MC-positive protein bands in HL1-hT1 cells was observed. Cellular accumulation of MC-LR occurred most likely via mechanisms independent on organic anion transporting polypeptides (OATPs) or multidrug resistance (MDR) proteins, as indicated (a) by a gene expression analysis of 11 human OATP genes and 4 major MDR genes (MDR1/P-glycoprotein, MRP1, MRP2 and BCRP); (b) by non-significant effects of OATP or MDR1 inhibitors on MC-LR uptake. Accumulation of MC-positive protein bands in HL1-hT1 cells was associated neither with alterations of cell viability and growth, dysregulations of ERK1/2 and p38 kinases, reactive oxygen species formation, induction of double-stranded DNA breaks nor modulations of stress-inducible genes (ATF3, HSP5). It suggests that LSCs might have a selective, MDR1-independent, survival advantage and higher tolerance towards MC-induced cytotoxic, genotoxic or cancer-related events than differentiated adult hepatocytes, fetal hepatocyte or malignant liver cell lines. HL1-hT1 cells provide a valuable in vitro tool for studying effects of toxicants and pharmaceuticals on LSCs, whose important role in the development of chronic toxicities and liver diseases is being increasingly recognized.


Asunto(s)
Células Madre Adultas/efectos de los fármacos , Carcinógenos/toxicidad , Hígado/efectos de los fármacos , Microcistinas/toxicidad , Células Madre Adultas/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/toxicidad , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/citología , Hígado/metabolismo , Toxinas Marinas
8.
Environ Sci Technol ; 52(17): 10078-10088, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30059226

RESUMEN

Cyanotoxins microcystin-LR (MC-LR) and cylindrospermopsin (CYN) represent hazardous waterborne contaminants and potent human hepatotoxins. However, in vitro monolayer cultures of hepatic cell lines were found to recapitulate, poorly, major hepatocyte-specific functions and inadequately predict hepatotoxic effects of MC-LR and CYN. We utilized 3-dimensional (3D), scaffold-free spheroid cultures of human telomerase-immortalized adult liver stem cells HL1-hT1 to evaluate hepatotoxic potential of MC-LR and CYN. In monolayer cultures of HL1-hT1 cells, MC-LR did not induce cytotoxic effects (EC50 > 10 micromol/L), while CYN inhibited cell growth and viability (48h-96h EC50 ≈ 5.5-0.6 micromol/L). Growth and viability of small growing spheroids were inhibited by both cyanotoxins (≥0.1 micromol/L) and were associated with blebbing and disintegration at the spheroid surface. Hepatospheroid damage and viability reduction were observed also in large mature spheroids, with viability 96h-EC50 values being 0.04 micromol/L for MC-LR and 0.1 micromol/L for CYN, and No Observed Effect Concentrations <0.01 micromol/L. Spheroid cultures of adult human liver stem cells HL1-hT1 exhibit sensitivity comparable to cultures of primary hepatocytes and provide a simple, practical, and cost-effective tool, which can be effectively used in environmental and toxicological research, including assessment of hepatotoxic potential and effect-based monitoring of various samples contaminated with toxic cyanobacteria.


Asunto(s)
Cianobacterias , Toxinas Marinas , Toxinas Bacterianas , Toxinas de Cianobacterias , Humanos , Hígado , Microcistinas , Células Madre
9.
Nutr Cancer ; 68(5): 827-37, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27266532

RESUMEN

Altered gap junctional intercellular communication (GJIC) has been associated with chemical carcinogenesis, where both chemical tumor promoters and chemopreventive agents (CPAs) are known to conversely modulate GJIC. The aim of this study was to investigate whether attenuation of chemically inhibited GJIC represents a common outcome induced by different CPAs, which could be effectively evaluated using in vitro methods. Rat liver epithelial cells WB-F344 were pretreated with a CPA for either 30 min or 24 h, and then exposed to GJIC-inhibiting concentration of a selected tumor promoter or environmental toxicant [12-O-tetradecanoylphorbol-13-acetate (TPA), lindane, fluoranthene, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), perfluorooctanoic acid (PFOA), or pentachlorophenol]. Out of nine CPAs tested, quercetin and silibinin elicited the most pronounced effects, preventing the dysregulation of GJIC by all the GJIC inhibitors, but DDT. Metformin and curcumin attenuated the effects of three GJIC inhibitors, whereas the other CPAs prevented the effects of two (diallyl sulfide, emodin) or one (indole-3-carbinol, thymoquinone) GJIC inhibitor. Significant attenuation of chemically induced inhibition of GJIC was observed in 27 (50%) out of 54 possible combinations of nine CPAs and six GJIC inhibitors. Our data demonstrate that in vitro evaluation of GJIC can be used as an effective screening tool for identification of chemicals with potential chemopreventive activity.


Asunto(s)
Anticarcinógenos/farmacología , Comunicación Celular/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Animales , Caprilatos/toxicidad , Carcinógenos/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Curcumina/farmacología , DDT/toxicidad , Células Epiteliales/efectos de los fármacos , Fluorenos/toxicidad , Fluorocarburos/toxicidad , Uniones Comunicantes/metabolismo , Hexaclorociclohexano/toxicidad , Hígado/citología , Hígado/efectos de los fármacos , Metformina/farmacología , Ratas , Ratas Endogámicas F344 , Acetato de Tetradecanoilforbol/toxicidad
10.
Phys Chem Chem Phys ; 18(28): 18802-10, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27344983

RESUMEN

This paper presents solid state synthesis and characterization of tetra-oxy iron(iv) and iron(v) species in their salt forms (Na4FeO4-Fe(IV) and K3FeO4-Fe(V)). Stability of the synthesized salts, commonly called ferrates, in water was determined by applying the (57)Fe Mössbauer spectroscopy technique. Within 2 s in water, Fe(IV) converted into Fe(III) while Fe(V) transformed into Fe(VI) and Fe(III) at pH = 8.2. Comparatively, Fe(VI) (bought as K2FeO4) remained stable in aqueous solution during the short time period. The oxidative removal efficiency of the high-valent iron species was then tested against five environmentally important estrogenic hormones (estron (E1), 17-ß-estradiol (E2), estriol (E3), 17-α-ethinylestradiol (EE2), and diethylstibestrol (DES)) in effluent water of a wastewater treatment plant. Three dosages of iron species (1, 10, and 100 mg L(-1)) were applied to the effluent water. An increase in the concentration of dosages enhanced the removal of estrogens. Both Fe(V) and Fe(VI) were effective in degrading estrogens, but Fe(IV) showed limited oxidation capacity to transform estrogens. The oxidized products of the estrogens were analyzed using Raman spectroscopy and high-performance liquid chromatography-mass spectrometry (HPLC-MS) techniques. Results demonstrated the transformation of estrogens into low molecular weight oxygenated compounds such as quinone-like and opened-aromatic ring species. A detailed study on E1 by using excess Fe(VI) showed the mineralization of the parent compound. The results demonstrate great potential of high-valent iron species in the degradation of endocrine disruptor chemicals like estrogens with several superior aspects including fast reactions, complete degradation and/or formation of benign organic species, and environmentally-acceptable iron oxide by-products.


Asunto(s)
Compuestos Férricos/química , Hierro/química , Agua/química , Oxidación-Reducción , Aguas Residuales
11.
Molecules ; 21(11)2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27827926

RESUMEN

Pectinatella magnifica, an invasive bryozoan, might significantly affect ecosystem balance due to its massive occurrence in many areas in Europe and other parts of the world. Biological and chemical analyses are needed to get complete information about the impact of the animal on the environment. In this paper, we aimed to evaluate in vitro cytotoxic effects of five extracts prepared from P. magnifica using LDH assay on THP-1 cell line. Antimicrobial activities of extracts against 22 different bacterial strains were tested by microdilution method. Our study showed that all extracts tested, except aqueous portion, demonstrated LD50 values below 100 µg/mL, which indicates potential toxicity. The water extract of P. magnifica with LD50 value of 250 µg/mL also shows potentially harmful effects. Also, an environmental risk resulting from the presence and increasing biomass of potentially toxic benthic cyanobacteria in old colonies should not be underestimated. Toxicity of Pectinatella extracts could be partially caused by presence of Aeromonas species in material, since we found members of these genera as most abundant bacteria associated with P. magnifica. Furthermore, P. magnifica seems to be a promising source of certain antimicrobial agents. Its methanolic extract, hexane, and chloroform fractions possessed selective inhibitory effect on some potential pathogens and food spoiling bacteria in the range of MIC 0.5-10 mg/mL. Future effort should be made to isolate and characterize the content compounds derived from P. magnifica, which could help to identify the substance(s) responsible for the toxic effects of P. magnifica extracts.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Briozoos/química , Cloroformo/farmacología , Hexanos/farmacología , Metanol/farmacología , Aeromonas/química , Animales , Antibacterianos/química , Toxinas Bacterianas/farmacología , Briozoos/microbiología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Especies Introducidas , Pruebas de Sensibilidad Microbiana , Pruebas de Toxicidad
12.
Environ Sci Technol ; 49(20): 12457-64, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26380879

RESUMEN

Microcystins (MCs) are primarily hepatotoxins produced by cyanobacteria and are responsible for intoxication in humans and animals. There are many incidents of chronic exposure to MCs, which have been attributed to the inappropriate treatment of water supplies or contaminated food. Using RAW 264.7 macrophages, we showed the potency of microcystin-LR (MC-LR) to stimulate production of pro-inflammatory cytokines (tumor necrosis factor α and interleukin-6) as a consequence of fast nuclear factor κB and nitrogen-activated protein kinase activation. In contrast to other studies, the observed effects were not attributed to the intracellular inhibition of protein phosphatases 1/2A due to lack of specific transmembrane transporters for MCs. However, the MC-LR-induced activation of macrophages was effectively inhibited by a specific peptide that blocks signaling of receptors, which play a pivotal role in the innate immune responses. Taken together, we showed for the first time that MC-LR could interfere with macrophage receptors that are responsible for triggering the above-mentioned signaling pathways. These findings provide an interesting mechanistic explanation of some adverse health outcomes associated with toxic cyanobacteria and MCs.


Asunto(s)
Cianobacterias/patogenicidad , Inmunidad Innata/efectos de los fármacos , Microcistinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Línea Celular/efectos de los fármacos , Factores Inmunológicos/toxicidad , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Toxinas Marinas , Ratones , FN-kappa B/metabolismo , Proteína Fosfatasa 2/metabolismo , Pruebas de Toxicidad Crónica/métodos , Factor de Necrosis Tumoral alfa/metabolismo , Abastecimiento de Agua
13.
J Anal Toxicol ; 48(2): 119-125, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175940

RESUMEN

Saxitoxins (STXs) are potent neurotoxins produced by marine dinoflagellates or freshwater cyanobacteria known to cause acute and eventually fatal human intoxications, which are classified as paralytic shellfish poisonings (PSPs). Rapid analysis of STXs in blood plasma can be used for a timely diagnosis and confirmation of PSPs. We developed a fast and simple method of STX extraction based on plasma sample acidification and precipitation by acetonitrile, followed by quantification using liquid chromatography-tandem mass spectrometry (LC-MS-MS). Our approach provides the results ≤30 min, with a limit of detection of 2.8 ng/mL and a lower limit of quantification of 5.0 ng/mL. Within-run and between-run precision experiments showed good reproducibility with ≤15% values. Standard curves for calibration were linear with correlation coefficients ≥0.98 across the assay calibration range (5-200 ng/mL). In an interlaboratory analytical exercise, the method was found to be 100% accurate in determining the presence or absence of STX in human plasma specimens, with recovery values of 86-99%. This simple method for STX determination in animal or human plasma can quickly and reliably diagnose STX exposures and confirm suspected PSP cases to facilitate patient treatment or expedite necessary public health or security actions.


Asunto(s)
Cromatografía Líquida con Espectrometría de Masas , Saxitoxina , Animales , Humanos , Cromatografía Liquida , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Plasma
14.
Environ Pollut ; 342: 123047, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036087

RESUMEN

Microcystin-LR (MC-LR) is a potent hepatotoxin produced by harmful cyanobacterial blooms (CyanoHABs). MC-LR targets highly differentiated hepatocytes expressing organic anion transporting polypeptides OATP1B1 and OATP1B3 that are responsible for hepatocellular uptake of the toxin. The present study utilized an advanced 3D in vitro human liver model Hepoid-HepaRG based on the cultivation of collagen-matrix embedded multicellular spheroids composed of highly differentiated and polarized hepatocyte-like cells. 14-d-old Hepoid-HepaRG cultures showed increased expression of OATP1B1/1B3 and sensitivity to MC-LR cytotoxicity at concentrations >10 nM (48 h exposure, EC20 = 26 nM). MC-LR induced neither caspase 3/7 activity nor expression of the endoplasmic reticulum stress marker gene BiP/GRP78, but increased release of pro-inflammatory cytokine IL-8, indicating a necrotic type of cell death. Subcytotoxic (10 nM) and cytotoxic (≥100 nM) MC-LR concentrations disrupted hepatocyte functions, such as xenobiotic metabolism phase-I enzyme activities (cytochrome P450 1A/1B) and albumin secretion, along with reduced expression of CYP1A2 and ALB genes. MC-LR also decreased expression of HNF4A gene, a critical regulator of hepatocyte differentiation and function. Genes encoding hepatobiliary membrane transporters (OATP1B1, BSEP, NTCP), hepatocyte gap junctional gene connexin 32 and the epithelial cell marker E-cadherin were also downregulated. Simultaneous upregulation of connexin 43 gene, primarily expressed by liver progenitor and non-parenchymal cells, indicated a disruption of tissue homeostasis. This was associated with a shift in the expression ratio of E-cadherin to N-cadherin towards the mesenchymal cell marker, a process linked to epithelial-mesenchymal transition (EMT) and hepatocarcinogenesis. The effects observed in the human liver cell in vitro model revealed mechanisms that can potentially contribute to the MC-LR-induced promotion and progression of hepatocellular carcinoma (HCC). Hepoid-HepaRG cultures provide a robust, accessible and versatile in vitro model, capable of sensitively detecting hepatotoxic effects at toxicologically relevant concentrations, allowing for assessing hepatotoxicity mechanisms, human health hazards and impacts of environmental hepatotoxins, such as MC-LR.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad Hepática Inducida por Sustancias y Drogas , Neoplasias Hepáticas , Toxinas Marinas , Humanos , Microcistinas/toxicidad , Microcistinas/metabolismo , Cadherinas
15.
Chem Biol Interact ; 397: 111046, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38735451

RESUMEN

Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 µM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).


Asunto(s)
Alcaloides , Toxinas Bacterianas , Toxinas de Cianobacterias , Metabolismo de los Lípidos , Hígado , Uracilo , Humanos , Alcaloides/farmacología , Toxinas Bacterianas/metabolismo , Uracilo/análogos & derivados , Uracilo/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Células Hep G2 , Hígado/metabolismo , Hígado/efectos de los fármacos , Homeostasis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Proteómica , Lipidómica , Lipogénesis/efectos de los fármacos
16.
Toxins (Basel) ; 15(3)2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36977060

RESUMEN

Freshwater cyanobacterial harmful blooms (CyanoHABs) produce a variety of toxic and bioactive compounds including lipopolysaccharides (LPSs). The gastrointestinal tract can be exposed to them via contaminated water even during recreational activities. However, there is no evidence of an effect of CyanoHAB LPSs on intestinal cells. We isolated LPSs of four CyanoHABs dominated by different cyanobacterial species and LPSs of four laboratory cultures representing the respective dominant cyanobacterial genera. Two intestinal and one macrophage cell lines were used to detect in vitro pro-inflammatory activity of the LPS. All LPSs isolated from CyanoHABs and laboratory cultures induced cytokines production in at least one in vitro model, except for LPSs from the Microcystis PCC7806 culture. LPSs isolated from cyanobacteria showed unique migration patterns in SDS-PAGE that were qualitatively distinct from those of endotoxins from Gram-negative bacteria. There was no clear relationship between the biological activity of the LPS and the share of genomic DNA of Gram-negative bacteria in the respective biomass. Thus, the total share of Gram-negative bacteria, or the presence of Escherichia coli-like LPSs, did not explain the observed pro-inflammatory activities. The pro-inflammatory properties of environmental mixtures of LPSs from CyanoHABs indicate their human health hazards, and further attention should be given to their assessment and monitoring.


Asunto(s)
Cianobacterias , Microcystis , Humanos , Lipopolisacáridos/farmacología , Cianobacterias/metabolismo , Endotoxinas/metabolismo , Agua Dulce/microbiología , Floraciones de Algas Nocivas
17.
Environ Toxicol Pharmacol ; 98: 104073, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36738853

RESUMEN

Components of cyanobacterial water blooms were quantified in aerosols above agitated water surfaces of five freshwater bodies. The thoracic and respirable aerosol fraction (0.1-10 µm) was sampled using a high-volume sampler. Cyanotoxins microcystins were detected by LC-MS/MS at levels 0.3-13.5 ng/mL (water) and < 35-415 fg/m3 (aerosol). Lipopolysaccharides (endotoxins) were quantified by Pyrogene rFC assay at levels < 10-119 EU/mL (water) and 0.13-0.64 EU/m3 (aerosol). Cyanobacterial DNA was detected by qPCR at concentrations corresponding to 104-105 cells eq./mL (water) and 101-103 cells eq./m3 (aerosol). Lipopolysaccharides isolated from bloom samples induced IL-6 and IL-8 cytokine release in human bronchial epithelial cells Beas-2B, while extracted cyanobacterial metabolites induced both pro-inflammatory and cytotoxic effects. Bloom components detected in aerosols and their bioactivities observed in upper respiratory airway epithelial cells together indicate that aerosols formed during cyanobacterial water blooms could induce respiratory irritation and inflammatory injuries, and thus present an inhalation health risk.


Asunto(s)
Toxinas de Cianobacterias , Cianobacterias , Humanos , Lipopolisacáridos/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem , Microcistinas/toxicidad , Cianobacterias/metabolismo , Agua Dulce/análisis , Agua , Aerosoles
18.
Front Toxicol ; 5: 1220998, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492623

RESUMEN

Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.

19.
Food Chem Toxicol ; 164: 113004, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35413382

RESUMEN

The frequencies of adverse outcomes associated with male reproductive health, including infertility and testicular cancer, are increasing. These adverse trends are partially attributed to increased exposure to environmental agents such as endocrine-disrupting chemicals (EDCs). This study addresses effects on EDCs on adjacent prepubertal Sertoli TM4 cells, specifically on 1) testicular gap junctional intercellular communication (GJIC), one of the hallmarks of non-genotoxic carcinogenicity, 2) GJIC building blocks connexins (Cx), and 3) mitogen-activated protein kinases MAPKs. We selected eight representatives of EDCs: organochlorine chemicals such as pesticides dichlorodiphenyltrichloroethane, lindane, methoxychlor, and vinclozolin, industrial chemicals bisphenol A and 2,2',4,4',5,5'-hexachlorobiphenyl, and components of personal care products, triclocarban and triclosan. EDCs rapidly dysregulated GJIC in Sertoli TM4 cells mainly via MAPK p38 and/or Erk1/2 pathways by the intermediate hyper- or de-phosphorylation of Cx43 (Ser368, Ser282) and translocation of Cx43 from the plasma membrane, suggesting disturbed intracellular trafficking of Cx43 protein. Surprisingly, EDCs did not rapidly activate MAPK Erk1/2 or p38; on the contrary, TCC and TCS decreased their activity (phosphorylation). Our results indicate that EDCs might disrupt testicular homeostasis and development via testicular GJIC, junctional and non-junctional functions of Cx43 and MAPK-signaling pathways in Sertoli cells.


Asunto(s)
Disruptores Endocrinos , Neoplasias Testiculares , Comunicación Celular , Conexina 43/genética , Conexina 43/metabolismo , Disruptores Endocrinos/metabolismo , Uniones Comunicantes/metabolismo , Humanos , Masculino , Fosforilación , Neoplasias Testiculares/metabolismo
20.
Toxins (Basel) ; 14(9)2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36136574

RESUMEN

Although information about the occurrence and distribution of retinoids in the environment is scarce, cyanobacterial water blooms have been identified as a significant source of these small molecules. Despite the confirmed presence of retinoids in the freshwater blooms dominated by cyanobacteria and their described teratogenic effects, reliable identification of retinoid producers and the mechanism of their biosynthesis is missing. In this study, the cultures of several taxonomically diverse species of axenic cyanobacteria were confirmed as significant producers of retinoid-like compounds. The consequent bioinformatic analysis suggested that the enzymatic background required for the biosynthesis of all-trans retinoic acid from retinal is not present across phylum Cyanobacteria. However, we demonstrated that retinal conversion into other retinoids can be mediated non-enzymatically by free radical oxidation, which leads to the production of retinoids widely detected in cyanobacteria and environmental water blooms, such as all-trans retinoic acid or all-trans 5,6epoxy retinoic acid. Importantly, the production of these metabolites by cyanobacteria in association with the mass development of water blooms can lead to adverse impacts in aquatic ecosystems regarding the described teratogenicity of retinoids. Moreover, our finding that retinal can be non-enzymatically converted into more bioactive retinoids, also in water, and out of the cells, increases the environmental significance of this process.


Asunto(s)
Cianobacterias , Teratógenos , Cianobacterias/metabolismo , Ecosistema , Retinoides/análisis , Retinoides/metabolismo , Retinoides/toxicidad , Teratógenos/toxicidad , Tretinoina/toxicidad , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA