Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Cardiol Rep ; 24(3): 247-260, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35028820

RESUMEN

PURPOSE OF REVIEW: Successful treatment of cancer can be hampered by the attendant risk of cardiotoxicity, manifesting as cardiomyopathy, left ventricle systolic dysfunction and, in some cases, heart failure. This risk can be mitigated if the injury to the heart is detected before the onset to irreversible cardiac impairment. The gold standard for cardiac imaging in cardio-oncology is echocardiography. Despite improvements in the application of this modality, it is not typically sensitive to sub-clinical or early-stage dysfunction. We identify in this review some emerging tracers for detecting incipient cardiotoxicity by positron emission tomography (PET). RECENT FINDINGS: Vectors labeled with positron-emitting radionuclides (e.g., carbon-11, fluorine-18, gallium-68) are now available to study cardiac function, metabolism, and tissue repair in preclinical models. Many of these probes are highly sensitive to early damage, thereby potentially addressing the limitations of current imaging approaches, and show promise in preliminary clinical evaluations. The overlapping pathophysiology between cardiotoxicity and heart failure significantly expands the number of imaging tools available to cardio-oncology. This is highlighted by the emergence of radiolabeled probes targeting fibroblast activation protein (FAP) for sensitive detection of dysregulated healing process that underpins adverse cardiac remodeling. The growth of PET scanner technology also creates an opportunity for a renaissance in metabolic imaging in cardio-oncology research.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapéutico , Cardiotoxicidad/diagnóstico por imagen , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Corazón/diagnóstico por imagen , Humanos , Oncología Médica , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Tomografía de Emisión de Positrones
2.
Molecules ; 27(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35268652

RESUMEN

Cancer cells require lipids to fulfill energetic, proliferative, and signaling requirements. Even though these cells can take up exogenous fatty acids, the majority exhibit a dependency on de novo fatty acid synthesis. Fatty acid synthase (FASN) is the rate-limiting enzyme in this process. Expression and activity of FASN is elevated in multiple cancers, where it correlates with disease progression and poor prognosis. These observations have sparked interest in developing methods of detecting FASN expression in vivo. One promising approach is the imaging of radiolabeled molecular probes targeting FASN by positron emission tomography (PET). However, although [11C]acetate uptake by prostate cancer cells correlates with FASN expression, no FASN-specific PET probes currently exist. Our aim was to synthesize and evaluate a series of small molecule triazolones based on GSK2194069, an FASN inhibitor with IC50 = 7.7 ± 4.1 nM, for PET imaging of FASN expression. These triazolones were labeled with carbon-11 in good yield and excellent radiochemical purity, and binding to FASN-positive LNCaP cells was significantly higher than FASN-negative PC3 cells. Despite these promising characteristics, however, these molecules exhibited poor in vivo pharmacokinetics and were predominantly retained in lymph nodes and the hepatobiliary system. Future studies will seek to identify structural modifications that improve tumor targeting while maintaining the excretion profile of these first-generation 11C-methyltriazolones.


Asunto(s)
Ácido Graso Sintasas
3.
Prostate ; 80(15): 1273-1296, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32865839

RESUMEN

INTRODUCTION: The Prostate Cancer Foundation (PCF) convened a PCF prostate-specific membrane antigen (PSMA) Theranostics State of the Science Meeting on 18 November 2019, at Weill Cornell Medicine, New York, NY. METHODS: The meeting was attended by 22 basic, translational, and clinical researchers from around the globe, with expertise in PSMA biology, development and use of PSMA theranostics agents, and clinical trials. The goal of this meeting was to discuss the current state of knowledge, the most important biological and clinical questions, and critical next steps for the clinical development of PSMA positron emission tomography (PET) imaging agents and PSMA-targeted radionuclide agents for patients with prostate cancer. RESULTS: Several major topic areas were discussed including the biology of PSMA, the role of PSMA-targeted PET imaging in prostate cancer, the physics and performance of different PSMA-targeted PET imaging agents, the current state of clinical development of PSMA-targeted radionuclide therapy (RNT) agents, the role of dosimetry in PSMA RNT treatment planning, barriers and challenges in PSMA RNT clinical development, optimization of patient selection for PSMA RNT trials, and promising combination treatment approaches with PSMA RNT. DISCUSSION: This article summarizes the presentations from the meeting for the purpose of globally disseminating this knowledge to advance the use of PSMA-targeted theranostic agents for imaging and treatment of patients with prostate cancer.


Asunto(s)
Neoplasias de la Próstata/terapia , Humanos , Masculino , Terapia Molecular Dirigida/métodos , Medicina de Precisión , Nanomedicina Teranóstica
4.
Mol Pharm ; 17(6): 1954-1962, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32286841

RESUMEN

The application of small molecules targeting prostate-specific membrane antigen (PSMA) has emerged as a highly promising clinical strategy for visualization and treatment of prostate cancer. Ligands that integrate the ability to both quantify the distribution of radioactivity and treat disease through the use of a matched pair of radionuclides have particular value in clinical and regulatory settings. In this study, we describe the development and preclinical evaluation of RPS-085, a ligand that binds PSMA and serum albumin and exploits the 64/67Cu radionuclide pair for prostate cancer theranostics. RPS-085 was synthesized by conjugation of a PSMA-targeting moiety, an Nε-(2-(4-iodophenyl)acetyl)lysine albumin binding group, and a bifunctionalized MeCOSar chelator. The IC50 of the metal-free RPS-085 was determined in a competitive binding assay. The affinity for human serum albumin of the radiolabeled compound was determined by high-performance affinity chromatography. Radiolabeling was performed in NH4OAc buffer at 25 °C. The stability of the radiolabeled compounds was assessed in vitro and in vivo. The biodistribution of [64/67Cu]Cu-RPS-085 was determined following intravenous administration to male BALB/c mice bearing LNCaP tumor xenografts. The radiochemical yields of [64/67Cu]Cu-RPS-085 were nearly quantitative after 20 min. The metal-free complex is a potent inhibitor of PSMA (IC50 = 29 ± 2 nM), and the radiolabeled compound has moderate affinity for human serum albumin (Kd = 9.9 ± 1.7 µM). Accumulation of the tracer in mice was primarily evident in tumor and kidneys. Activity in all other tissues, including blood, was negligible, and the radiolabeled compounds demonstrated high stability in vitro and in vivo. Tumor activity reached a maximum at 4 h post injection (p.i.) and cleared gradually over a period of 96 h. By contrast, activity in the kidney cleared rapidly from 4 to 24 h p.i. As a consequence, by 24 h p.i., the tumor-to-kidney ratio exceeds 2, and the predicted dose to tumors is significantly greater than the dose to kidneys. [64Cu]Cu-RPS-085 combines rapid tissue distribution and clearance with prolonged retention in LNCaP tumor xenografts. The pharmacokinetics should enable radioligand therapy using [67Cu]Cu-RPS-085. By virtue of its rapid kidney clearance, the therapeutic index of [67Cu]Cu-RPS-085 likely compares favorably to its parent structure, [177Lu]Lu-RPS-063, a highly avid PSMA-targeting compound. On this basis, [64/67Cu]Cu-RPS-085 show great promise as PSMA-targeting theranostic ligands for prostate cancer imaging and therapy.


Asunto(s)
Radioisótopos de Cobre/química , Cobre/química , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Animales , Línea Celular , Masculino , Ratones Endogámicos BALB C , Estructura Molecular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Medicina de Precisión/métodos , Neoplasias de la Próstata/metabolismo
5.
Inorg Chem ; 59(7): 5116-5132, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32216281

RESUMEN

Coordination compounds of the lanthanide ions (Ln3+) have important applications in medicine due to their photophysical, magnetic, and nuclear properties. To effectively use the Ln3+ ions for these applications, chelators that stably bind them in vivo are required to prevent toxic side effects that arise from localization of these ions in off-target tissue. In this study, two new picolinate-containing chelators, a heptadentate ligand OxyMepa and a nonadentate ligand Oxyaapa, were prepared, and their coordination chemistries with Ln3+ ions were thoroughly investigated to evaluate their suitability for use in medicine. Protonation constants of these chelators and stability constants for their Ln3+ complexes were evaluated. Both ligands exhibit a thermodynamic preference for small Ln3+ ions. The log KLuL = 12.21 and 21.49 for OxyMepa and Oxyaapa, respectively, indicating that the nonadentate Oxyaapa forms complexes of significantly higher stability than the heptadentate OxyMepa. X-ray crystal structures of the Lu3+ complexes were obtained, revealing that Oxyaapa saturates the coordination sphere of Lu3+, whereas OxyMepa leaves an additional open coordination site for a bound water ligand. Solution structural studies carried out with NMR spectroscopy revealed the presence of two possible conformations for these ligands upon Ln3+ binding. Density functional theory (DFT) calculations were applied to probe the geometries and energies of these conformations. Energy differences obtained by DFT are small but consistent with experimental data. The photophysical properties of the Eu3+ and Tb3+ complexes were characterized, revealing modest photoluminescent quantum yields of <2%. Luminescence lifetime measurements were carried out in H2O and D2O, showing that the Eu3+ and Tb3+ complexes of OxyMepa have two inner-sphere water ligands, whereas the Eu3+ and Tb3+ complexes of Oxyaapa have zero. Lastly, variable-temperature 17O NMR spectroscopy was performed for the Gd-OxyMepa complex to determine its water exchange rate constant of kex298 = (2.8 ± 0.1) × 106 s-1. Collectively, this comprehensive characterization of these Ln3+ chelators provides valuable insight for their potential use in medicine and garners additional understanding of ligand design strategies.

6.
Org Biomol Chem ; 17(28): 6866-6871, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31268109

RESUMEN

The bifunctional ligand p-SCN-Bn-HOPO, which has four 1,2-hydroxypyridinone groups on a spermine backbone with an isothiocyanate linker, has been shown to be an efficient and stable chelator for Zr(iv) and, more importantly, the radioisotope 89Zr for use in radiolabeling antibodies for positron emission tomography (PET) imaging. Previous studies of 89Zr-HOPO-trastuzumab in mice showed low background, good tumor to organ contrast, and very low bone uptake which show p-SCN-Bn-HOPO to be an important next-generation bifunctional chelator for radioimmunoPET imaging with 89Zr. However, the reported synthesis of p-SCN-Bn-HOPO involves nine steps and multiple HPLC purifications with an overall yield of about 1.4%. Herein we report an improved and efficient synthesis of p-SCN-Bn-HOPO in four steps with 14.3% overall yield which will improve its availability for further biological studies and wider application in PET imaging. The new synthetic route also allows variation in linker length and chemistries which may be helpful in modifying in vivo clearance behaviors of future agents.


Asunto(s)
Quelantes/síntesis química , Piridonas/química , Espermina/química , Quelantes/química , Estructura Molecular , Tomografía de Emisión de Positrones
7.
Molecules ; 24(8)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022852

RESUMEN

Determining chemokine receptor CXCR4 expression is significant in multiple diseases due to its role in promoting inflammation, cell migration and tumorigenesis. [68Ga]Pentixafor is a promising ligand for imaging CXCR4 expression in multiple tumor types, but its utility is limited by the physical properties of 68Ga. We screened a library of >200 fluorine-containing structural derivatives of AMD-3465 to identify promising candidates for in vivo imaging of CXCR4 expression by positron emission tomography (PET). Compounds containing fluoroethyltriazoles consistently achieved higher docking scores. Six of these higher scoring compounds were radiolabeled by click chemistry and evaluated in PC3-CXCR4 cells and BALB/c mice bearing bilateral PC3-WT and PC3-CXCR4 xenograft tumors. The apparent CXCR4 affinity of the ligands was relatively low, but tumor uptake was CXCR4-specific. The tumor uptake of [18F]RPS-534 (7.2 ± 0.3 %ID/g) and [18F]RPS-547 (3.1 ± 0.5 %ID/g) at 1 h p.i. was highest, leading to high tumor-to-blood, tumor-to-muscle, and tumor-to-lung ratios. Total cell-associated activity better predicted in vivo tumor uptake than did the docking score or apparent CXCR4 affinity. By this metric, and on the basis of their high yielding radiosynthesis, high tumor uptake, and good contrast to background, [18F]RPS-547, and especially [18F]RPS-534, are promising 18F-labeled candidates for imaging CXCR4 expression.


Asunto(s)
Complejos de Coordinación/administración & dosificación , Imagen Molecular , Péptidos Cíclicos/administración & dosificación , Radiofármacos/administración & dosificación , Receptores CXCR4/genética , Animales , Línea Celular Tumoral , Complejos de Coordinación/química , Radioisótopos de Flúor/química , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Ratones , Péptidos Cíclicos/química , Tomografía de Emisión de Positrones , Radiofármacos/química , Receptores CXCR4/química , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Eur J Nucl Med Mol Imaging ; 45(11): 1841-1851, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29623376

RESUMEN

PURPOSE: Treatment of late-stage prostate cancer by targeted radiotherapeutics such as 131I-MIP-1095 and 177Lu-PSMA-617 has shown encouraging early results. Lu-177 is preferred to I-131 in clinical settings, but targeted radioligand therapy (RLT) with 177Lu-PSMA-617 has not reached its full potential due to insufficient dose delivery to the tumor. We recently developed a dual-targeting radioiodinated ligand, RPS-027, that targets PSMA and uses albumin binding to enable good tumor uptake and significantly reduced kidney uptake in a preclinical model. Further development of this ligand is limited by the inability to independently modify PSMA and albumin binding and the requirement of I-131 for therapeutic application. We therefore sought to devise a new class of trifunctional ligands for RLT with (1) a high-affinity PSMA-binding domain, (2) an albumin-binding group (ABG), and (3) a chelator for radiometals such as 68Ga3+, 177Lu3+ and 225Ac3+. METHODS: Ligands incorporating a triazolylphenylurea-containing PSMA-targeting group, an Nε-(2-(4-iodophenyl)acetyl)lysine ABG and the bifunctional chelator p-SCN-Bn-DOTA linked by a PEG-containing polymer containing 0,3,4,6,8 or 12 repeats were prepared. PSMA affinity was determined in LNCaP cells and uptake and tissue distribution was studied in mice bearing LNCaP tumor xenografts and compared to 177Lu-PSMA-617. Imaging studies were performed up to 24 h post-injection (p.i.) using 66Ga3+ and biodistribution studies at 4 h, 24 h and 96 h p.i. with 177Lu3+. RESULTS: PSMA affinity was high (IC50 = 1-10 nM) and inversely proportional to the linker length. Tumor uptake correlated with binding affinity and was significantly greater than for 177Lu-PSMA-617 over 96 h. The highest uptake was achieved with 177Lu-RPS-063 (30.0 ± 6.9 %ID/g; 4 h p.i.). Kidney uptake was generally high, with the exception of the lowest affinity ligand 177Lu-RPS-067. Each of the compounds showed slower blood clearance than 177Lu-PSMA-617, with clearance proportional to linker length. CONCLUSIONS: The high tumor uptake achieved with these trifunctional ligands predicts larger (up to 4×) doses delivered to the tumor than can be achieved with 177Lu-PSMA-617. Although PSMA-mediated kidney uptake was also observed, the exceptional area under the curve (AUC) in the tumor warrants further investigation of these novel ligands as candidates for RLT.


Asunto(s)
Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Neoplasias de la Próstata/radioterapia , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Masculino , Ratones , Terapia Molecular Dirigida , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Radiometría , Distribución Tisular
9.
Molecules ; 23(10)2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30304795

RESUMEN

Emerging interest in extending the plasma half-life of small molecule radioligands warrants a consideration of the appropriate radionuclide for PET imaging at longer time points (>8 h). Among candidate positron-emitting radionuclides, 66Ga (t1/2 = 9.5 h, ß+ = 57%) has suitable nuclear and chemical properties for the labeling and PET imaging of radioligands of this profile. We investigated the value of 66Ga to preclinical screening and the evaluation of albumin-binding PSMA-targeting small molecules. 66Ga was produced by irradiation of a natZn target. 66Ga3+ ions were separated from Zn2+ ions by an optimized UTEVA anion exchange column that retained 99.99987% of Zn2+ ions and allowed 90.2 ± 2.8% recovery of 66Ga3+. Three ligands were radiolabeled in 46.4 ± 20.5%; radiochemical yield and >90% radiochemical purity. Molar activity was 632 ± 380 MBq/µmol. Uptake in the tumor and kidneys at 1, 3, 6, and 24 h p.i. was determined by µPET/CT imaging and more completely predicted the distribution kinetics than uptake of the [68Ga]Ga-labeled ligands did. Although there are multiple challenges to the use of 66Ga for clinical PET imaging, it can be a valuable research tool for ligand screening and preclinical imaging beyond 24 h.


Asunto(s)
Radioisótopos de Galio , Radiofármacos , Animales , Diseño de Fármacos , Radioisótopos de Galio/química , Radioisótopos de Galio/aislamiento & purificación , Humanos , Ligandos , Metales/química , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/aislamiento & purificación , Soluciones , Microtomografía por Rayos X
10.
Eur J Nucl Med Mol Imaging ; 44(4): 647-661, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27847991

RESUMEN

PURPOSE: Current clinical imaging of PSMA-positive prostate cancer by positron emission tomography (PET) mainly features 68Ga-labeled tracers, notably [68Ga]Ga-PSMA-HBED-CC. The longer half-life of fluorine-18 offers significant advantages over Ga-68, clinically and logistically. We aimed to develop high-affinity PSMA inhibitors labeled with fluorine-18 as alternative tracers for prostate cancer. METHODS: Six triazolylphenyl ureas and their alkyne precursors were synthesized from the Glu-urea-Lys PSMA binding moiety. PSMA affinity was determined in a competitive binding assay using LNCaP cells. The [18F]triazoles were isolated following a Cu(I)-catalyzed click reaction between the alkynes and [18F]fluoroethylazide. The 18F-labeled compounds were evaluated in nude mice bearing LNCaP tumors and compared to [68Ga]Ga-PSMA-HBED-CC and [18F]DCFPyL. Biodistribution studies of the two tracers with the highest imaged-derived tumor uptake and highest PSMA affinity were undertaken at 1 h, 2 h and 4 h post-injection (p.i.), and co-administration of PMPA was used to determine whether uptake was PSMA-specific. RESULTS: F-18-labeled triazolylphenyl ureas were prepared with a decay-corrected RCY of 20-40 %, >98 % radiochemical and chemical purity, and specific activity of up to 391 GBq/µmol. PSMA binding (IC50) ranged from 3-36 nM. The position of the triazole influenced tumor uptake (3 > 4 > 2), and direct conjugation of the triazole with the phenylurea moiety was preferred to insertion of a spacer group. Image-derived tumor uptake ranged from 6-14 %ID/g at 2 h p.i., the time of maximum tumor uptake; uptake of [68Ga]Ga-PSMA-HBED-CC and [18F]DCFPyL was 5-6 %ID/g at 1-3 h p.i., the time of maximum tumor uptake. Biodistribution studies of the two most promising compounds gave maximum tumor uptakes of 10.9 ± 1.0 % and 14.3 ± 2.5 %ID/g, respectively, as compared to 6.27 ± 1.44 %ID/g for [68Ga]Ga-PSMA-HBED-CC. CONCLUSIONS: Six [18F]triazolylphenyl ureas were prepared in good radiochemical yield. Compounds showed PSMA-specific uptake in LNCaP tumors as high as 14 % ID/g, more than a 2-fold increase over [68Ga]Ga-PSMA-HBED-CC. The facile and high-yielding radiosynthesis of these 18F-labeled triazoles as well as their promising in vitro and in vivo characteristics make them worthy of clinical development for PET imaging of prostate cancer.


Asunto(s)
Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Compuestos de Fenilurea/síntesis química , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Radiofármacos/síntesis química , Triazoles/síntesis química , Animales , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Radioisótopos de Flúor/química , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Ligandos , Masculino , Ratones , Ratones Desnudos , Compuestos de Fenilurea/farmacocinética , Unión Proteica , Radiofármacos/farmacocinética , Radiofármacos/farmacología , Distribución Tisular , Triazoles/farmacocinética
11.
Chirality ; 29(1): 10-13, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27901292

RESUMEN

The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer-killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase-1. C75 is administered in the form of a racemic mixture of (-) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase-1. Therefore, we assessed the relative cancer-killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (-)-C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)-C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor-killing activity of ionizing radiation, while minimizing weight loss in cancer patients.


Asunto(s)
Carnitina O-Palmitoiltransferasa/química , Ácido Graso Sintasas/química , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Ácido Graso Sintasas/metabolismo , Humanos , Masculino , Estereoisomerismo
12.
Angew Chem Int Ed Engl ; 56(46): 14712-14717, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-28963750

RESUMEN

The 18-membered macrocycle H2 macropa was investigated for 225 Ac chelation in targeted alpha therapy (TAT). Radiolabeling studies showed that macropa, at submicromolar concentration, complexed all 225 Ac (26 kBq) in 5 min at RT. [225 Ac(macropa)]+ remained intact over 7 to 8 days when challenged with either excess La3+ ions or human serum, and did not accumulate in any organ after 5 h in healthy mice. A bifunctional analogue, macropa-NCS, was conjugated to trastuzumab as well as to the prostate-specific membrane antigen-targeting compound RPS-070. Both constructs rapidly radiolabeled 225 Ac in just minutes at RT, and macropa-Tmab retained >99 % of its 225 Ac in human serum after 7 days. In LNCaP xenograft mice, 225 Ac-macropa-RPS-070 was selectively targeted to tumors and did not release free 225 Ac over 96 h. These findings establish macropa to be a highly promising ligand for 225 Ac chelation that will facilitate the clinical development of 225 Ac TAT for the treatment of soft-tissue metastases.


Asunto(s)
Actinio/química , Actinio/uso terapéutico , Partículas alfa , Compuestos Macrocíclicos/química , Animales , Xenoinjertos , Humanos , Ligandos , Ratones , Trastuzumab/química
13.
Eur J Nucl Med Mol Imaging ; 41(7): 1280-92, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24577951

RESUMEN

INTRODUCTION: Since the prostate-specific membrane antigen (PSMA) is frequently over-expressed in prostate cancer (PCa) several PSMA-targeting molecules are under development to detect and treat metastatic castration resistant prostate cancer (mCRPC). We investigated the tissue kinetics of a small molecule inhibitor of PSMA ((S)-2-(3-((S)-1-carboxy-5-(3-(4-[(124)I]iodophenyl)ureido)pentyl)ureido)pentanedioicacid; MIP-1095) using PET/CT to estimate radiation dosimetry for the potential therapeutic use of (131)I-MIP-1095 in men with mCRPC. We also report preliminary safety and efficacy of the first 28 consecutive patients treated under a compassionate-use protocol with a single cycle of (131)I-MIP-1095. METHODS: Sixteen patients with known prostate cancer underwent PET/CT imaging after i.v. administration of (124)I-MIP-1095 (mean activity: 67.4 MBq). Each patient was scanned using PET/CT up to five times at 1, 4, 24, 48 and 72 h post injection. Volumes of interest were defined for tumor lesions and normal organs at each time point followed by dose calculations using the OLINDA/EXM software. Twenty-eight men with mCRPC were treated with a single cycle of (131)I-MIP-1095 (mean activity: 4.8 GBq, range 2 to 7.2 GBq) and followed for safety and efficacy. Baseline and follow up examinations included a complete blood count, liver and kidney function tests, and measurement of serum PSA. RESULTS: I-124-MIP-1095 PET/CT images showed excellent tumor uptake and moderate uptake in liver, proximal intestine and within a few hours post-injection also in the kidneys. High uptake values were observed only in salivary and lacrimal glands. Dosimetry estimates for I-131-MIP-1095 revealed that the highest absorbed doses were delivered to the salivary glands (3.8 mSv/MBq, liver (1.7 mSv/MBq) and kidneys (1.4 mSv/MBq). The absorbed dose calculated for the red marrow was 0.37 mSv/MBq. PSA values decreased by >50 % in 60.7 % of the men treated. Of men with bone pain, 84.6 % showed complete or moderate reduction in pain. Hematological toxicities were mild. Of men treated, 25 % had a transient slight to moderate dry mouth. No adverse effects on renal function were observed. CONCLUSION: Based on the biodistribution and dose calculations of the PSMA-targeted small molecule (124)I-MIP-1095 therapy with the authentic analog (131)I-MIP-1095 enables a targeted tumor therapy with unprecedented doses delivered to the tumor lesions. Involved lymph node and bone metastases were exposed to estimated absorbed doses upwards of 300 Gy.


Asunto(s)
Antígenos de Superficie/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Glutamatos/uso terapéutico , Terapia Molecular Dirigida/métodos , Neoplasias de la Próstata/radioterapia , Urea/análogos & derivados , Anciano , Glutamatos/efectos adversos , Glutamatos/farmacocinética , Humanos , Radioisótopos de Yodo/uso terapéutico , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida/efectos adversos , Metástasis de la Neoplasia , Órganos en Riesgo/efectos de la radiación , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Radiometría , Radiofármacos/efectos adversos , Radiofármacos/farmacocinética , Radiofármacos/uso terapéutico , Dosificación Radioterapéutica , Seguridad , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Urea/efectos adversos , Urea/farmacocinética , Urea/uso terapéutico
14.
J Labelled Comp Radiopharm ; 57(4): 255-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24395431

RESUMEN

Single amino acid chelates (SAACs) and SAAC-like bifunctional ligands can be exploited in the design of a variety of bioconjugates for facile metallation with the M(CO)3 (+) unit with M = (99m) Tc or Re. When the donor groups of the ligand are quinolone, thiazole or other similarly conjugated heterocycles, the rhenium complexes are fluorescent, affording complementary and isostructural fluorescent probes to the radioactive (99m) Tc analogues. The versatility of the approach has been demonstrated by the preparation of bioconjugates incorporating peptides, biotin, folic acid, thymidine and vitamin B12 . In addition, the unusual photophysical properties observed for rhenium of the [bisthiazole-diamino butane-Re(CO)3 (+) ] derivative [BTBA-Re(CO)3 ](+) are discussed.


Asunto(s)
Aminoácidos/química , Quelantes/química , Imagen Óptica/métodos , Cintigrafía/métodos , Renio/química , Tecnecio/química , Animales , Humanos
15.
Bioorg Med Chem Lett ; 23(5): 1557-63, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23333070

RESUMEN

Prostate specific membrane antigen (PSMA) is recognized as an attractive molecular target for the development of radiopharmaceuticals to image and potentially treat metastatic prostate cancer. A series of novel (99m)Tc/Re-tricarbonyl radiolabeled PSMA inhibitors were therefore synthesized by the attachment of glutamate-urea-lysine (Glu-urea-Lys) and glutamate-urea-glutamate (Glu-urea-Glu) pharmacophore to single amino acid chelate (SAAC) where the SAAC ligand was either bis(pyridin-2-ylmethyl)amino (DPA), bis((1-methyl-1H-imidazol-2-yl)methyl)amino (NMI), bis((1-(carboxymethyl)-1H-imidazol-2-yl)methyl)amino (CIM) or bis((1-(2-(bis(carboxymethyl)amino)-2-oxoethyl)-1H-imidazol-2-yl)methyl)amino (TIM). The in vitro binding affinity of the rhenium complexes was evaluated using PSMA-expressing human prostate cancer LNCaP cells. IC(50) values ranged from 3.8 ± 2 to >2000 nM. A linker between the SAAC chelate and pharmacophore was required for high affinity binding. However, extending the length of the linker did not substantially improve binding. PSMA binding was also influenced by the nature of the SAAC chelate. One of the most potent compounds, 23b (IC(50)=4.8 ± 2.7 nM), was radiolabeled with technetium tricarbonyl ({(99m)Tc(CO)(3)}(+)) to afford the {(99m)Tc(CO)(3)}(+) complex in excellent yield and high purity. This effort has led to the identification of a diverse series of promising high affinity {(99m)Tc(CO)(3)}(+) radiolabeled PSMA inhibitors.


Asunto(s)
Quelantes/química , Calicreínas/antagonistas & inhibidores , Compuestos de Organotecnecio/química , Antígeno Prostático Específico/antagonistas & inhibidores , Neoplasias de la Próstata/diagnóstico por imagen , Radiofármacos/química , Renio/química , Línea Celular Tumoral , Quelantes/síntesis química , Quelantes/farmacocinética , Quelantes/farmacología , Humanos , Ligandos , Masculino , Compuestos de Organotecnecio/síntesis química , Compuestos de Organotecnecio/farmacocinética , Compuestos de Organotecnecio/farmacología , Neoplasias de la Próstata/metabolismo , Cintigrafía , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Radiofármacos/farmacología , Relación Estructura-Actividad , Distribución Tisular
16.
PET Clin ; 18(3): 287-294, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37117123

RESUMEN

Fibroblast activation protein-α (FAP) has attracted increasing attention as a selective marker of cancer-associated fibroblasts (CAFs) and more broadly, of activated fibroblasts in tissues undergoing remodeling of their ECM due to chronic inflammation, fibrosis, or wound healing. Since FAP is critical to the initiation of metastatic growth, its expression will serve as a molecular marker to detect tumors at an earlier stage of development compared to currently available methods. The design of high affinity small molecule FAP inhibitor will allow for noninvasive imaging of activated fibroblast in cancer patients. Small molecule inhibitors of FAP are being developed for targeted radiotherapy of tumors.


Asunto(s)
Neoplasias , Serina Endopeptidasas , Humanos , Serina Endopeptidasas/metabolismo , Ligandos , Fibroblastos/metabolismo , Fibroblastos/patología , Neoplasias/metabolismo
17.
Transl Oncol ; 22: 101450, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35597190

RESUMEN

The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.

18.
J Surg Oncol ; 103(6): 587-601, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21480253

RESUMEN

As cancer treatment cost soar and the mantra for "personalized medicine" grows louder, we will increasingly be searching for solutions to these diametrically opposed forces. In this review we highlight several exciting novel imaging strategies including MRI, CT, PET SPECT, sentinel node, and ultrasound imaging that hold great promise for improving outcomes through detection of lymph node involvement. We provide clinical data that demonstrate how these evolving strategies have the potential to transform treatment paradigms.


Asunto(s)
Diagnóstico por Imagen/métodos , Neoplasias/patología , Biopsia del Ganglio Linfático Centinela/métodos , Biomarcadores de Tumor , Humanos , Microscopía Acústica , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Ultrasonografía Intervencional
19.
Mol Imaging Biol ; 23(5): 686-696, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33721173

RESUMEN

PURPOSE: Fibroblast activation protein-α (FAPα) is uniquely expressed in activated fibroblasts, including cancer-associated fibroblasts that populate tumor stroma and contribute to proliferation and immunosuppression. Radiolabeled FAPα inhibitors enable imaging of multiple human cancers, but time-dependent clearance from tumors currently limits their utility as FAPα-targeted radiotherapeutics. We sought to increase the area under the curve (AUC) by constructing a trifunctional ligand that binds FAPα with high affinity and also binds albumin and theranostic radiometals. PROCEDURES: RPS-309 comprised a FAPα-targeting moiety, an albumin-binding group, and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Inhibition of recombinant human FAPα (rhFAPα) was determined by colorimetric assay. Affinity for human serum albumin (HSA) was determined by high-performance affinity chromatography. The tissue distribution of [68Ga]Ga-RPS-309 in SW872 tumor xenograft-bearing mice was imaged by microPET/CT and quantified by biodistribution studies performed from 30 min to 3 h post injection (p.i.). The biodistribution of [177Lu]Lu-RPS-309 was determined at 4, 24, and 96 h p.i. RESULTS: RPS-309 inhibits rhFAPα with IC50 = 7.3 ± 1.4 nM. [68Ga]Ga-RPS-309 is taken up specifically by FAPα-expressing cells and binds HSA with Kd = 4.6 ± 0.1 µM. Uptake of the radiolabeled ligand in tumors was evident from 30 min p.i. (> 5 %ID/g) and was significantly reduced by co-injection of RPS-309. Specific skeletal uptake was also observed. Activity in tumors was constant through 4 h p.i., but cleared significantly by 24 h. The AUC in this period was 127 (%ID/g) × h. CONCLUSIONS: RPS-309 is a high-affinity FAPα inhibitor with prolonged plasma residence. Introduction of the albumin-binding group did not compromise FAPα binding. Although initial tumor uptake was high and FAPα-specific, RPS-309 also progressively cleared from tumors. Nevertheless, RPS-309 incorporates multiple sites in which structural diversity can be introduced, and therefore serves as a platform for future structure-activity relationship studies.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer/metabolismo , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Medicina de Precisión/métodos , Radiofármacos , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Femenino , Humanos , Ligandos , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/química , Radiofármacos/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
20.
EJNMMI Radiopharm Chem ; 6(1): 38, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34928478

RESUMEN

BACKGROUND: As 225Ac-labeled radiopharmaceuticals continue to show promise as targeted alpha therapeutics, there is a growing need to standardize quality control (QC) testing procedures. The determination of radiochemical purity (RCP) is an essential QC test. A significant obstacle to RCP testing is the disruption of the secular equilibrium between actinium-225 and its daughter radionuclides during labeling and QC testing. In order to accelerate translation of actinium-225 targeted alpha therapy, we aimed to determine the earliest time point at which the RCP of an 225Ac-labeled radiopharmaceutical can be accurately quantified. RESULTS: Six ligands were conjugated to macrocyclic metal chelators and labeled with actinium-225 under conditions designed to generate diverse incorporation yields. RCP was determined by radio thin layer chromatography (radioTLC) followed by exposure of the TLC plate on a phosphor screen either 0.5, 2, 3.5, 5, 6.5, or 26 h after the plate was developed. The dataset was used to create models for predicting the true RCP for any pre-equilibrium measurement taken at an early time point. The 585 TLC measurements span RCP values of 1.8-99.5%. The statistical model created from these data predicted an independent data set with high accuracy. Predictions made at 0.5 h are more uncertain than predictions made at later time points. This is primarily due to the decay of bismuth-213. A measurement of RCP > 90% at 2 h predicts a true RCP > 97% and guarantees that RCP will exceed 90% after secular equilibrium is reached. These findings were independently validated using NaI(Tl) scintillation counting and high resolution gamma spectroscopy on a smaller set of samples with 10% ≤ RCP ≤ 100%. CONCLUSIONS: RCP of 225Ac-labeled radiopharmaceuticals can be quantified with acceptable accuracy at least 2 h after radioTLC using various methods of quantifying particle emissions. This time point best balances the need to accurately quantify RCP with the need to safely release the batch as quickly as possible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA