Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Magn Reson Med ; 83(6): 2042-2050, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31724246

RESUMEN

PURPOSE: To develop a 3D sequence for T1ρ relaxation mapping using radial volumetric encoding (3D-T1ρ -RAVE) and to evaluate the multi relaxation components in the liver of healthy controls and chronic liver disease (CLD) patients. METHODS: Fat saturation and T1ρ preparation modules were followed by a train of gradient-echo acquisitions and T1 restoration delay. The series of T1ρ -weighted images were fitted using mono-exponential, bi-exponential, and stretched-exponential models. The repeatability and reproducibility of the proposed technique were evaluated on National Institute of Standards and Technology phantom by calculating the coefficient of variation between test-retest scans on the same scanner and between two different 3T scanners, respectively. Mann-Whitney U-test was performed to assess differences in T1ρ components among patients (n = 3) and a control group (n = 10). RESULTS: The phantom study showed an error of 8.9% and 11.5% in mono T2 relaxation time measurement relative to the reference on 2 different scanners. The coefficient of variation for test-retest scans performed on the same scanner was 5.7% and 2.4% for scans performed on 2 scanners. The comparison between healthy controls and CLD patients showed a significant difference (P < .05) in mono relaxation time (P = .002), stretched-exponential relaxation parameter (P = .04). The Akaike information criteria C criterion showed 2.53 ± 0.9% (2.3 ± 0.3% for CLD) of the voxels are bi-exponential while in 65.3 ± 5.8% (81.2 ± 0.06% for CLD) of the liver voxels, the stretched-exponential model was preferred. CONCLUSION: The 3D-T1ρ -RAVE sequence allows volumetric, multicomponent T1ρ assessment of the liver during free breathing and can distinguish between healthy volunteers and CLD patients.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Hígado/diagnóstico por imagen , Fantasmas de Imagen , Reproducibilidad de los Resultados
2.
J Magn Reson Imaging ; 50(4): 1207-1218, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30693600

RESUMEN

BACKGROUND: In addition to the articular cartilage, osteoarthritis (OA) affects several other tissues such as tendons, ligaments, and subchondral bone. T1ρ relaxation study of these short T2 tissues may provide a more comprehensive evaluation of OA. PURPOSE: To develop a 3D spin-lattice relaxation in the rotating frame (T1ρ ) prepared zero echo time (ZTE)-based pointwise encoding time reduction with radial acquisition (3D-T1ρ -PETRA) sequence for relaxation mapping of semisolid short-T2 tissues on a clinical 3 T scanner. STUDY TYPE: Prospective. POPULATION: Phantom, two bovine whole knee joint and Achilles tendon specimens, 10 healthy volunteers with no known inflammation, trauma or pain in the knee or ankle. FIELD STRENGTH/SEQUENCE: A customized PETRA sequence to acquire fat-suppressed 3D T1ρ -weighted images tissues with semisolid short T2 / T2* relaxation times in the knee and ankle joints at 3 T. ASSESSMENT: Mono- and biexponential T1ρ relaxation components were assessed in the patellar tendon (PT), anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), and Achilles tendon (AT). STATISTICAL TESTS: Kruskal-Wallis with post-hoc Dunn's test for multiple pairwise comparisons. RESULTS: Phantom and ex vivo studies showed the feasibility of T1ρ relaxation mapping using the proposed 3D-T1ρ -PETRA sequence. The in vivo study demonstrated an averaged mono-T1ρ relaxation of (median [IQR]) 15.9 [14.5] msec, 23.6 [9.4] msec, 17.4 [7.4] msec, and 5.8 [10.2] msec in the PT, ACL, PCL, and AT, respectively. The bicomponent analysis showed the short and long components (with their relative fractions) of 0.65 [1.0] msec (46.9 [15.3]%) and 37.3 [18.4] msec (53.1 [15.3]%) for PT, 1.7 [2.1] msec (42.5 [12.5]%) and 43.7 [17.8] msec (57.5 [12.5]%) for ACL, and 1.2 [1.9] msec (42.6 [14.0]%) and 27.7 [14.7] msec (57.3 [14.0]%) for PCL and 0.4 [0.02] msec (58.8 [13.3]%/) and 31.3 [10.8] msec (41.2 [13.3]%) for AT. Statistically significant (P ≤ 0.05) differences were observed in the mono- and biexponential relaxation between several regions. DATA CONCLUSION: The 3D-T1ρ -PETRA sequence allows volumetric, isotropic (0.78 × 0.78 × 0.78 mm), biexponential T1ρ assessment with corresponding fractions of the tissues with semisolid short T2 / T2* . LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;50:1207-1218.


Asunto(s)
Tendón Calcáneo/anatomía & histología , Articulación del Tobillo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Articulación de la Rodilla/anatomía & histología , Imagen por Resonancia Magnética/métodos , Adulto , Animales , Bovinos , Estudios de Factibilidad , Femenino , Voluntarios Sanos , Humanos , Masculino , Modelos Animales , Fantasmas de Imagen , Estudios Prospectivos , Valores de Referencia
3.
J Magn Reson Imaging ; 50(3): 824-835, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30614152

RESUMEN

BACKGROUND: Measuring T1ρ in the knee menisci can potentially be used as noninvasive biomarkers in detecting early-stage osteoarthritis (OA). PURPOSE: To demonstrate the feasibility of biexponential T1ρ relaxation mapping of human knee menisci. STUDY TYPE: Prospective. POPULATION: Eight healthy volunteers with no known inflammation, trauma, or pain in the knee and three symptomatic subjects with early knee OA. FIELD STRENGTH/SEQUENCE: Customized Turbo-FLASH sequence to acquire 3D-T1ρ -weighted images on a 3 T MRI scanner. ASSESSMENT: T1ρ relaxation values were assessed in 11 meniscal regions of interest (ROIs) using monoexponential and biexponential models. STATISTICAL TESTS: Nonparametric rank-sum tests, Kruskal-Wallis test, and coefficient of variation. RESULTS: The mean monoexponential T1ρ relaxation in the lateral menisci were 28.05 ± 4.2 msec and 37.06 ± 10.64 msec for healthy subjects and early knee OA patients, respectively, while the short and long components were 8.07 ± 0.5 msec and 72.35 ± 3.2 msec for healthy subjects and 2.63 ± 2.99 msec and 55.27 ± 24.76 msec for early knee OA patients, respectively. The mean monoexponential T1ρ relaxation in the medial menisci were 34.30 ± 3.8 msec and 37.26 ± 11.38 msec for healthy and OA patients, respectively, while the short and long components were 7.76 ± 0.7 msec and 72.19 ± 4.2 msec for healthy subjects and 3.06 ± 3.24 msec and 55.27 ± 24.59 msec for OA patients, respectively. Statistically significant (P ≤ 0.05) differences were observed in the monoexponential relaxation between some of the ROIs. The T1ρ,short was significantly lower (P = 0.02) in the patients than controls. The rmsCV% ranges were 1.51-16.6%, 3.59-14.3%, and 4.91-15.6% for T1ρ -mono, T1ρ -short, and T1ρ -long, respectively. DATA CONCLUSION: Our results showed that in all ROIs, T1ρ relaxation times of outer zones (red zones) were less than inner zones (white zones). Monoexponential T1ρ was increased in medial, lateral, and body menisci of early OA while the biexponential numbers were decreased in early OA patients. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2019;50:824-835.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Articulación de la Rodilla/anatomía & histología , Meniscos Tibiales/anatomía & histología , Estudios de Factibilidad , Humanos , Estudios Prospectivos , Reproducibilidad de los Resultados
4.
J Magn Reson Imaging ; 48(6): 1707-1716, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29717787

RESUMEN

BACKGROUND: The progressive loss of hyaline articular cartilage due to osteoarthritis (OA) changes the functional and biochemical properties of cartilage. Measuring the T1 ρ along with the morphological assessment can potentially be used as noninvasive biomarkers in detecting early-stage OA. To correlate the biochemical and morphological data, submillimeter isotropic resolution for both studies is required. PURPOSE: To implement a high spatial resolution 3D-isotropic-MRI sequence for simultaneous assessment of morphological and biexponential T1 ρ relaxometry of human knee cartilage in vivo. STUDY TYPE: Prospective. POPULATION: Ten healthy volunteers with no known inflammation, trauma, or pain in the knee. FIELD STRENGTH/SEQUENCE: Standard FLASH sequence and customized Turbo-FLASH sequence to acquire 3D-isotropic-T1 ρ-weighted images on a 3T MRI scanner. ASSESSMENT: The mean volume and thickness along with mono- and biexponential T1 ρ relaxations were assessed in the articular cartilage of 10 healthy volunteers. STATISTICAL TESTS: Nonparametric rank-sum tests. Bland-Altman analysis and coefficient of variation. RESULTS: The mean monoexponential T1 ρ relaxation was 40.7 ± 4.8 msec, while the long and short components were 58.2 ± 3.9 msec and 6.5 ± 0.6 msec, respectively. The mean fractions of long and short T1 ρ relaxation components were 63.7 ± 5.9% and 36.3 ± 5.9%, respectively. Statistically significant (P ≤ 0.03) differences were observed in the monoexponential and long components between some of the regions of interest (ROIs). No gender differences between biexponential components were observed (P > 0.05). Mean cartilage volume and thickness were 25.9 ± 6.4 cm3 and 2.2 ± 0.7 mm, respectively. Cartilage volume (P = 0.01) and thickness (P = 0.03) were significantly higher in male than female participants across all ROIs. Bland-Altman analysis showed agreement between two morphological methods with limits of agreement between -1000 mm3 and +1100 mm3 for volume, and -0.78 mm and +0.46 mm for thickness, respectively. DATA CONCLUSION: Simultaneous assessment of morphological and multicomponent T1 ρ relaxation of knee joint with 0.7 × 0.7 × 0.7 mm isotropic spatial resolution is demonstrated in vivo. Comparison with a standard method showed that the proposed technique is suitable for assessing the volume and thickness of articular cartilage. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;48:1707-1716.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Imagenología Tridimensional/métodos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto , Biomarcadores , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Estudios Prospectivos , Reproducibilidad de los Resultados , Adulto Joven
5.
J Magn Reson Imaging ; 48(5): 1185-1198, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30295344

RESUMEN

More than a decade after the introduction of compressed sensing (CS) in MRI, researchers are still working on ways to translate it into different research and clinical applications. The greatest advantage of CS in MRI is the reduced amount of k-space data needed to reconstruct images, which can be exploited to reduce scan time or to improve spatial resolution and volumetric coverage. Efficient data acquisition using CS is extremely important for compositional mapping of the musculoskeletal system in general and knee cartilage mapping techniques in particular. High-resolution quantitative information about tissue biochemical composition could be obtained in just a few minutes using CS MRI. However, in order to make this goal a reality, some issues still need to be addressed. In this article we review the current state of the art of CS methods for rapid compositional mapping of knee cartilage. Specifically, data acquisition strategies, image reconstruction algorithms, and data fitting models are discussed. Different CS studies for T2 and T1ρ mapping of knee cartilage are reviewed, with illustrative results. Future directions, opportunities, and challenges of rapid compositional mapping techniques are also discussed. Level of Evidence: 4 Technical Efficacy: Stage 6 J. Magn. Reson. Imaging 2018;47:1185-1198.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Algoritmos , Compresión de Datos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Señales Asistido por Computador
6.
Cortex ; 179: 1-13, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39089096

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is among the most prevalent, inheritable, and heterogeneous childhood-onset neurodevelopmental disorders. Children with a hereditary background of ADHD have heightened risk of having ADHD and persistent impairment symptoms into adulthood. These facts suggest distinct familial-specific neuropathological substrates in ADHD that may exist in anatomical components subserving attention and cognitive control processing pathways during development. The objective of this study is to investigate the topological properties of the gray matter (GM) structural brain networks in children with familial ADHD (ADHD-F), non-familial ADHD (ADHD-NF), as well as matched controls. A total of 452 participants were involved, including 132, 165 and 155 in groups of ADHD-F, ADHD-NF and typically developed children, respectively. The GM structural brain network was constructed for each group using graph theoretical techniques with cortical and subcortical structures as nodes and correlations between volume of each pair of the nodes within each group as edges, while controlled for confounding factors using regression analysis. Relative to controls, children in both ADHD-F and ADHD-NF groups showed significantly higher nodal global and nodal local efficiencies in the left caudal middle frontal gyrus. Compared to controls and ADHD-NF, children with ADHD-F showed distinct structural network topological patterns associated with right precuneus (significantly higher nodal global efficiency and significantly higher nodal strength), left paracentral gyrus (significantly higher nodal strength and trend toward significantly higher nodal local efficiency) and left putamen (significantly higher nodal global efficiency and trend toward significantly higher nodal local efficiency). Our results for the first time in the field provide evidence of familial-specific structural brain network alterations in ADHD, that may contribute to distinct clinical/behavioral symptomology and developmental trajectories in children with ADHD-F.

7.
Brain Sci ; 13(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36672028

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent, inheritable, and heterogeneous neurodevelopmental disorder. Children with a family history of ADHD are at elevated risk of having ADHD and persisting its symptoms into adulthood. The objective of this study was to investigate the influence of having or not having positive family risk factor in the neuroanatomy of the brain in children with ADHD. Cortical thickness-, surface area-, and volume-based measures were extracted and compared in a total of 606 participants, including 132, 165, and 309 in groups of familial ADHD (ADHD-F), non-familial ADHD (ADHD-NF), and typically developed children, respectively. Compared to controls, ADHD probands showed significantly reduced gray matter surface area in the left cuneus. Among the ADHD subgroups, ADHD-F showed significantly increased gray matter volume in the right thalamus and significantly thinner cortical thickness in the right pars orbitalis. Among ADHD-F, an increased volume of the right thalamus was significantly correlated with a reduced DSM-oriented t-score for ADHD problems. The findings of this study may suggest that a positive family history of ADHD is associated with the structural abnormalities in the thalamus and inferior frontal gyrus; these anatomical abnormalities may significantly contribute to the emergence of ADHD symptoms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA