Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768325

RESUMEN

A short antimicrobial peptide (AMP), rich in tryptophan and arginine (P6-HRWWRWWRR-NH2), was used in molecular dynamics (MD) simulations to investigate the interaction between AMPs and lipopolysaccharides (LPS) from two E. coli outer membrane (OM) membrane models. The OM of Gram-negative bacteria is an asymmetric bilayer, with the outer layer consisting exclusively of lipopolysaccharide molecules and the lower leaflet made up of phospholipids. The mechanisms by which short AMPs permeate the OM of Gram-negative bacteria are not well understood at the moment. For this study, two types of E. coli OM membrane models were built with (i) smooth LPS composed of lipid A, K12 core and O21 O-antigen, and (ii) rough type LPS composed of lipid A and R1 core. An OmpF monomer from E. coli was embedded in both membrane models. MD trajectories revealed that AMP insertion in the LPS layer was facilitated by the OmpF-created gap and allowed AMPs to form hydrogen bonds with the phosphate groups of inner core oligosaccharides. OM proteins such as OmpF may be essential for the permeation of short AMPs such as P6 by exposing the LPS binding site or even by direct translocation of AMPs across the OM.


Asunto(s)
Escherichia coli , Lipopolisacáridos , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Triptófano/metabolismo , Lípido A/metabolismo , Membrana Celular/metabolismo , Bacterias Gramnegativas/metabolismo , Péptidos Antimicrobianos
2.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675235

RESUMEN

Bacterial cellulose (BC) is a biopolymer whose properties have been intensively studied, especially for biomedical applications. Since BC has no antimicrobial activity, it is necessary to use bioactive substances for developing wound healing applications. Another drawback of BC is the loss if its water retention capacity after dehydration. In order to overcome these problems, carboxymethyl cellulose (CMC) and turmeric extract (TE) were selected for the preparation of BC composites. Citric acid (CA) was used as the crosslinking agent. These composites were tested as potential antimicrobial wound dressing materials. TE-loaded BC-CMC composites were characterized in terms of their morphology, crystallinity, and thermal behavior. Swelling tests and curcumin-release kinetic analysis were also performed. All the composites tested had high swelling degrees, which is an advantage for the exudate adsorption from chronic wounds. The antibacterial potential of such composites was tested against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans). The in vitro cytotoxicity toward L929 fibroblast cells was studied as well. The obtained results allow us to recommend these composites as good candidates for wound dressing applications.


Asunto(s)
Antiinfecciosos , Carboximetilcelulosa de Sodio , Carboximetilcelulosa de Sodio/farmacología , Staphylococcus aureus , Celulosa/farmacología , Escherichia coli , Cinética , Antibacterianos/farmacología , Bacterias , Vendajes
3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36769008

RESUMEN

To improve their biological activity, complexes [Cu(bipy)(dmtp)2(OH2)](ClO4)2·dmtp (1) and [Cu(phen)(dmtp)2(OH2)](ClO4)2·dmtp (2) (bipy 2,2'-bipyridine, phen: 1,10-phenantroline, and dmtp: 5,7-dimethyl-1,2,4-triazolo [1,5-a]pyrimidine) were included in ß-cyclodextrins (ß-CD). During the inclusion, the co-crystalized dmtp molecule was lost, and UV-Vis spectra together with the docking studies indicated the synthesis of new materials with 1:1 and 1:2 molar ratios between complexes and ß-CD. The association between Cu(II) compounds and ß-CD has been proven by the identification of the components' patterns in the IR spectra and powder XRD diffractograms, while solid-state UV-Vis and EPR spectra analysis highlighted a slight modification of the square-pyramidal stereochemistry around Cu(II) in comparison with precursors. The inclusion species are stable in solution and exhibit the ability to scavenge or trap ROS species (O2·- and HO·) as indicated by the EPR experiments. Moreover, the two inclusion species exhibit anti-proliferative activity against murine melanoma B16 cells, which has been more significant for (2)@ß-CD in comparison with (2). This behavior is associated with a cell cycle arrest in the G0/G1 phase. Compared with precursors, (1a)@ß-CD and (2a)@ß-CD exhibit 17 and 26 times more intense activity against planktonic Escherichia coli, respectively, while (2a)@ß-CD is 3 times more active against the Staphylococcus aureus strain.


Asunto(s)
Cobre , beta-Ciclodextrinas , Animales , Ratones , Cobre/química , Cristalografía por Rayos X , beta-Ciclodextrinas/farmacología , beta-Ciclodextrinas/química , Antibacterianos/farmacología , Espectrofotometría Infrarroja
4.
Int J Mol Sci ; 24(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37762504

RESUMEN

The current study reports on the fabrication of composite scaffolds based on polycaprolactone (PCL) and cerium (Ce)-containing powders, followed by their characterization from compositional, structural, morphological, optical and biological points of view. First, CeO2, Ce-doped calcium phosphates and Ce-substituted bioglass were synthesized by wet-chemistry methods (precipitation/coprecipitation and sol-gel) and subsequently loaded on PCL fibres processed by electrospinning. The powders were proven to be nanometric or micrometric, while the investigation of their phase composition showed that Ce was present as a dopant within the crystal lattice of the obtained calcium phosphates or as crystalline domains inside the glassy matrix. The best bioactivity was attained in the case of Ce-containing bioglass, while the most pronounced antibacterial effect was visible for Ce-doped calcium phosphates calcined at a lower temperature. The scaffolds were composed of either dimensionally homogeneous fibres or mixtures of fibres with a wide size distribution and beads of different shapes. In most cases, the increase in polymer concentration in the precursor solution ensured the achievement of more ordered fibre mats. The immersion in SBF for 28 days triggered an incipient degradation of PCL, evidenced mostly through cracks and gaps. In terms of biological properties, the composite scaffolds displayed a very good biocompatibility when tested with human osteoblast cells, with a superior response for the samples consisting of the polymer and Ce-doped calcium phosphates.


Asunto(s)
Cerio , Poliésteres , Humanos , Polímeros , Antibacterianos , Polvos
5.
J Struct Biol ; 214(4): 107919, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356881

RESUMEN

The increased use of proton therapy has led to the need of better understanding the cellular mechanisms involved. The aim of this study was to investigate the effects induced by the accelerated proton beam in hepatocarcinoma cells. An existing facility in IFIN-HH, a 3 MV Tandetron™ accelerator, was used to irradiate HepG2 human hepatocarcinoma cells with doses between 0 and 3 Gy. Colony formation was used to assess the influence of radiation on cell long-term replication. Also, the changes induced at the mitochondrial level were shown by increased ROS and ATP levels as well as a decrease in the mitochondrial membrane potential. An increased dose has induced DNA damages and G2/M cell cycle arrest which leads to caspase 3/7 mediated apoptosis and senescence induction. Finally, the morphological and ultrastructural changes were observed at the membrane level and the nucleus of the irradiated cells. Thus, proton irradiation induces both morphological and functional changes in HepG2 cells.


Asunto(s)
Protones , Humanos , Células Hep G2 , Especies Reactivas de Oxígeno
6.
Molecules ; 27(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35164029

RESUMEN

In an attempt to increase the biological activity of the 1,2,4-triazolo[1,5-a]pyrimidine scaffold through complexation with essential metal ions, the complexes trans-[Cu(mptp)2Cl2] (1), [Zn(mptp)Cl2(DMSO)] (2) (mptp: 5-methyl-7-phenyl-1,2,4-triazolo[1,5-a]pyrimidine), [Cu2(dmtp)4Cl4]·2H2O (3) and [Zn(dmtp)2Cl2] (4) (dmtp: 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine), were synthesized and characterized as new antiproliferative and antimicrobial species. Both complexes (1) and (2) crystallize in the P21/n monoclinic space group, with the tetrahedral surroundings generating a square-planar stereochemistry in the Cu(II) complex and a tetrahedral stereochemistry in the Zn(II) species. The mononuclear units are interconnected in a supramolecular network through π-π interactions between the pyrimidine moiety and the phenyl ring in (1) while supramolecular chains resulting from C-H∙∙∙π interactions were observed in (2). All complexes exhibit an antiproliferative effect against B16 tumor cells and improved antibacterial and antifungal activities compared to the free ligands. Complex (3) displays the best antimicrobial activity against all four tested strains, both in the planktonic and biofilm-embedded states, which can be correlated to its stronger DNA-binding and nuclease-activity traits.


Asunto(s)
Complejos de Coordinación/farmacología , Cobre/química , Zinc/química , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Complejos de Coordinación/química , Cobre/farmacología , Cristalografía por Rayos X , Humanos , Ligandos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Pirimidinas/química , Pirimidinas/farmacocinética , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Zinc/farmacología
7.
Biometals ; 34(5): 1155-1172, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34350537

RESUMEN

In an attempt to propose new applications for the biomedical field, complexes with mixed ligands {[Cu(bpy)2(µ2OClO3)]ClO4}n (1) and [Cu(phen)2(OH2)](ClO4)2 (2) (bpy: 2,2'-biyridine; phen and 1,10-phenantroline) were evaluated for their antibacterial and cytotoxicicity features and for the elucidation of some of the mechanisms involved. Complex (2) proved to be a very potent antibacterial agent, exhibing MIC and MBEC values 2 to 54 times lower than those obtained for complex (1) against both susceptible or resistant Gram-positive and Gram-negative strains, in planktonic or biofilm growth state. In exchange, complex (1) exhibited selective cytotoxicity against melanoma tumor cells (B16), proving a promising potential for developing novel anticancer drugs. The possible mechanisms of both antimicrobial and antitumor activity of the copper(II) complexes is their DNA intercalative ability coupled with ROS generation. The obtained results recommend the two complexes for further development as multipurpose copper-containing drugs.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Antibacterianos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Quelantes/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Cobre/farmacología , Cristalografía por Rayos X , Ligandos
8.
Molecules ; 26(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34833864

RESUMEN

Novel complexes of type [Cu(N-N)(dmtp)2(OH2)](ClO4)2·dmtp ((1) N-N: 2,2'-bipyridine; (2) L: 1,10-phenantroline and dmtp: 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine) were designed in order to obtain biologically active compounds. Complexes were characterized as mononuclear species that crystallized in the space group P-1 of the triclinic system with a square pyramidal geometry around the copper (II). In addition to the antiproliferative effect on murine melanoma B16 cells, complex (1) exhibited low toxicity on normal BJ cells and did not affect membrane integrity. Complex (2) proved to be a more potent antimicrobial in comparison with (1), but both compounds were more active in comparison with dmtp-both against planktonic cells and biofilms. A stronger antimicrobial and antibiofilm effect was noticed against the Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). Both electron paramagnetic resonance (EPR) and Saccharomyces cerevisiae studies indicated that the complexes were scavengers rather than reactive oxygen species promoters. Their DNA intercalating capacity was evidenced by modifications in both absorption and fluorescence spectra. Furthermore, both complexes exhibited nuclease-like activity, which increased in the presence of hydrogen peroxide.


Asunto(s)
Antiinfecciosos , Quelantes , Complejos de Coordinación , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Pirimidinas , Saccharomyces cerevisiae/crecimiento & desarrollo , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Línea Celular Tumoral , Quelantes/síntesis química , Quelantes/química , Quelantes/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Humanos , Ratones , Pirimidinas/síntesis química , Pirimidinas/química , Pirimidinas/farmacología
9.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971958

RESUMEN

Antimicrobial peptides are molecules synthetized by a large variety of organisms as an innate defense against pathogens. These natural compounds have been identified as promising alternatives to widely used molecules to treat infections and cancer cells. Antimicrobial peptides could be viewed as future chemotherapeutic alternatives, having the advantage of low propensity to drug resistance. In this study, we evaluated the efficiency of the antimicrobial peptide gramicidin A (GA) and the anticancer drug, doxorubicin (Doxo) against the spheroids from colorectal cancer cells (HT-29). The two drugs were applied separately against HT-29 spheroids as well as together to determine if they can act synergistically. The spheroid evolution, cell viability, and ATP levels were monitored at 24 and 48 h after the applied treatments. The results show significant drops in cell viability and cellular ATP levels for all the experimental treatments. The simultaneous use of the two compounds (GA and Doxo) seems to cause a synergistic effect against the spheroids.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias , Esferoides Celulares/metabolismo , Doxorrubicina/agonistas , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Gramicidina/agonistas , Gramicidina/farmacología , Células HT29 , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Esferoides Celulares/patología
10.
Molecules ; 25(7)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252370

RESUMEN

Lead (Pb) is the most prevalent heavy metal pollutant in the natural environment. Pb is not a fundamental element for plants, but they absorb it when it is present in their environment, having no known physiological activity. The aim of our research was to evaluate the efficacy of laser photoacoustic spectroscopy as a tool to monitor changes induced by Pb in plant respiration by highlighting two molecular markers (C2H4 and CO2). To better understand Pb phytotoxicity, we monitored the plantlets evolution as well as the morphology of the root cells. Firstly, we showed that the treatment hinders the plantlet's development. Furthermore, using laser photoacoustic spectroscopy, we found a decrease in the concentration of C2H4 and CO2 vapors measured in the respiration of treated plants. Finally, fluorescence microscopy results showed that in Pb treated plantlets, the cell roots morphology is clearly altered as compared with the untreated ones. All the results are well correlated and can help further in understanding Pb phytotoxicity.


Asunto(s)
Dióxido de Carbono/química , Plomo/toxicidad , Semillas/crecimiento & desarrollo , Respiración de la Célula/efectos de los fármacos , Etilenos/química , Rayos Láser , Plomo/análisis , Técnicas Fotoacústicas , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Semillas/química , Semillas/efectos de los fármacos
11.
Molecules ; 25(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668589

RESUMEN

Nowadays, thanks to nanotechnological progress, which itself guides us more and more closely toward not only the efficient design of innovative nanomaterials or nanostructures, but to the improvement of their functionality, we benefit from an important asset in the battle against pathogenic illnesses. Herein, we report a versatile biocompatible plasmonic nanoplatform based on a Whatman paper incorporating positively-charged gold nanospherical particles via the immersion approach. The morphological characterization of the as-engineered-plasmonic paper was examined by SEM (scanning electron microscopy) and HRTEM (high-resolution transmission electron microscopy) investigations, while its surface chemical modification with a synthetic polypeptide, specifically RRWHRWWRR-NH2 (P2), was proved by monitoring the plasmonic response of loaded gold nanospheres and the emission signal of P2 via fluorescence spectroscopy. The as-functionalized plasmonic paper is non-cytotoxic towards BJ fibroblast human cells at bactericidal concentrations. Finally, the antimicrobial activity of the P2-functionalized plasmonic paper on both planktonic bacteria and biofilms was tested against two reference strains: Gram-positive Bacteria, i.e., Staphylococcus aureus and the Gram-negative Bacteria, i.e., Escherichia coli, determining microbial inhibition of up to 100% for planktonic bacteria. In line with the above presented nanoplatform's proper design, followed by their functionalization with active antimicrobial peptides, new roads can be open for determining antibiotic-free treatments against different relevant pathogens.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Escherichia coli/efectos de los fármacos , Oro/farmacología , Nanopartículas del Metal/química , Péptidos/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Biopelículas/efectos de los fármacos , Línea Celular , Humanos , Papel
12.
Molecules ; 25(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825156

RESUMEN

Complexes with mixed ligands [Cu(N-N)2(pmtp)](ClO4)2 ((1) N-N: 2,2'-bipyridine; (2) L: 1,10-phenanthroline and pmpt: 5-phenyl-7-methyl-1,2,4-triazolo[1,5-a]pyrimidine) were synthesized and structurally and biologically characterized. Compound (1) crystallizes into space group Pa and (2) in P-1. Both complexes display an intermediate stereochemistry between the two five-coordinated ones. The biological tests indicated that the two compounds exhibited superoxide scavenging capacity, intercalative DNA properties, and metallonuclease activity. Tests on various cell systems indicated that the two complexes neither interfere with the proliferation of Saccharomyces cerevisiae or BJ healthy skin cells, nor cause hemolysis in the active concentration range. Nevertheless, the compounds showed antibacterial potential, with complex (2) being significantly more active than complex (1) against all tested bacterial strains, both in planktonic and biofilm growth state. Both complexes exhibited a very good activity against B16 melanoma cells, with a higher specificity being displayed by compound (1). Taken together, the results indicate that complexes (1) and (2) have specific biological relevance, with potential for the development of antitumor or antimicrobial drugs.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Bacterias/efectos de los fármacos , Complejos de Coordinación/química , Cobre/química , Compuestos Heterocíclicos/química , Melanoma Experimental/tratamiento farmacológico , Antibacterianos/química , Antineoplásicos/química , Células Cultivadas , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Ligandos
13.
J Am Chem Soc ; 141(32): 12448-12452, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31368708

RESUMEN

Protein and peptide interactions are characterized in the liquid state by multidimensional NMR spectroscopy experiments, which can take hours to record. We show that starting from hyperpolarized HDO, two-dimensional (2D) proton correlation maps of a peptide, either free in solution or interacting with liposomes, can be acquired in less than 60 s. In standard 2D NMR spectroscopy without hyperpolarization, the acquisition time required for similar spectral correlations is on the order of hours. This hyperpolarized experiment enables the identification of amino acids featuring solvent-interacting hydrogens and provides fast spectroscopic analysis of peptide conformers. Sensitivity-enhanced 2D proton correlation spectroscopy is a useful and straightforward tool for biochemistry and structural biology, as it does not recur to nitrogen-15 or carbon-13 isotope enrichment.

14.
Biochim Biophys Acta Gen Subj ; 1861(7): 1844-1854, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28372989

RESUMEN

BACKGROUND: High antimicrobial efficacy of short tryptophan-and arginine-rich peptides makes them good candidates in the fight against pathogens. Substitution of tryptophan and arginine by histidine could be used to modulate the peptides efficacy by optimizing their structures. METHODS: The peptide (RRWWRWWRR), reported to showed good antimicrobial efficacy, was used as template, seven new analogs being designed substituting tryptophan or arginine with histidine. The peptides' efficacy was tested against E. coli, B. subtilis and S. aureus. The cytotoxicity and hemolytic effect were evaluated and the therapeutic index was inferred for each peptide. Atomic force microscopy and molecular simulation were used to analyze the effects of peptides on bacterial membrane. RESULTS: The substitution of tryptophan by histidine proved to strongly modulate the antimicrobial activity, mainly by changing the peptide-to-membrane binding energy. The substitution of arginine has low effect on the antimicrobial efficacy. The presence of histidine residue reduced the cytotoxic and hemolytic activity of the peptides in some cases maintaining the same efficacy against bacteria. The peptides' antimicrobial activity was correlated to the 3D-hydrophobic moment and to a simple structure-based packing parameter. CONCLUSION: The results show that some of these peptides have the potential to become good candidates to fight against bacteria. The substitution by histidine proved to fine tune the therapeutic index allowing the optimization of the peptide structure mainly by changing its binding energy and 3D-hydrophobic moment. GENERAL SIGNIFICANCE: The short tryptophan reach peptides therapeutic index can be maximized using the histidine substitution to optimize their structure.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos/farmacología , Arginina , Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Hemólisis/efectos de los fármacos , Histidina , Humanos , Modelos Moleculares , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Triptófano
15.
Langmuir ; 32(14): 3495-505, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27003513

RESUMEN

Here we describe a new BODIPY-based membrane probe (1) that provides an alternative to dialkylcarbocyanine dyes, such as DiI-C18, that can be excited in the blue spectral region. Compound 1 has unbranched octadecyl chains at the 3,5-positions and a meso-amino function. In organic solvents, the absorption and emission maxima of 1 are determined mainly by solvent acidity and dipolarity. The fluorescence quantum yield is high and reaches 0.93 in 2-propanol. The fluorescence decays are well fitted with a single-exponential in pure solvents and in small and giant unilamellar vesicles (GUV) with a lifetime of ca. 4 ns. Probe 1 partitions in the same lipid phase as DiI-C18(5) for lipid mixtures containing sphingomyelin and for binary mixtures of dipalmitoylphosphatidylcholine (DPPC) and dioleoylphosphatidylcholine (DOPC). The lipid phase has no effect on the fluorescence lifetime but influences the fluorescence anisotropy. The translational diffusion coefficients of 1 in GUVs and OLN-93 cells are of the same order as those reported for DiI-C18. The directions of the absorption and emission transition dipole moments of 1 are calculated to be parallel. This is reflected in the high steady-state fluorescence anisotropy of 1 in high ordered lipid phases. Molecular dynamic simulations of 1 in a model of the DOPC bilayer indicate that the average angle of the transition moments with respect to membrane normal is ca. 70°, which is comparable with the value reported for DiI-C18.


Asunto(s)
Alcanosulfonatos/química , Compuestos de Boro/química , Membrana Celular/química , Colorantes Fluorescentes/química , Liposomas Unilamelares/química , Animales , Línea Celular , Polarización de Fluorescencia , Simulación de Dinámica Molecular , Ratas , Espectrometría de Fluorescencia
16.
J Photochem Photobiol B ; 250: 112833, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141326

RESUMEN

The solvatochromic dye Laurdan is widely used in sensing the lipid packing of both model and biological membranes. The fluorescence emission maximum shifts from about 440 nm (blue channel) in condensed membranes (So) to about 490 nm (green channel) in the liquid-crystalline phase (Lα). Although the fluorescence intensity based generalized polarization (GP) is widely used to characterize lipid membranes, the fluorescence lifetime of Laurdan, in the blue and the green channel, is less used for that purpose. Here we explore the correlation between GP and fluorescence lifetimes by spectroscopic measurements on the So and Lα phases of large unilamellar vesicles of DMPC and DPPC. A positive correlation between GP and the lifetimes is observed in each of the optical channels for the two lipid phases. Microfluorimetric determinations on giant unilamellar vesicles of DPPC and DOPC at room temperature are performed under linearly polarized two-photon excitation to disentangle possible subpopulations of Laurdan at a scale below the optical resolution. Fluorescence intensities, GP and fluorescence lifetimes depend on the angle between the orientation of the linear polarization of the excitation light and the local normal to the membrane of the optical cross-section. This angular variation depends on the lipid phase and the emission channel. GP and fluorescence intensities in the blue and green channel in So and in the blue channel in Lα exhibit a minimum near 90o. Surprisingly, the intensity in the green channel in Lα reaches a maximum near 90o. The fluorescence lifetimes in the two optical channels also reach a pronounced minimum near 90o in So and Lα, apart from the lifetime in the blue channel in Lα where the lifetime is short with minimal angular variation. To our knowledge, these experimental observations are the first to demonstrate the existence of a bent conformation of Laurdan in lipid membranes, as previously suggested by molecular dynamics calculations.


Asunto(s)
Lauratos , Liposomas Unilamelares , Membrana Celular , Lauratos/análisis , Lauratos/química , 2-Naftilamina/química , Colorantes Fluorescentes/química , Polarización de Fluorescencia
17.
Anal Biochem ; 440(2): 123-9, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23747535

RESUMEN

Due to their asymmetric nature, complex fluorescence spectra of molecules can be analyzed much better by log-normal distributions than by Gaussian ones. So far, the log-normal function has been used for deconvolution of emission spectra of different fluorescent molecules, such as Tryptophan and Prodan, but to our knowledge it is far less used for Laurdan (2-dimethylamino-6-lauroylnaphthalene). In this article, we present the decomposition of Laurdan emission spectra in large unilamellar vesicles using a procedure that relies on the log-normal asymmetric function. The procedure was calibrated using Laurdan spectra in homogeneous solutions of various solvents. Comparing our results with the ones obtained from a Gaussian fit, we show that (i) the position of the elementary peaks (~440 and 490 nm) is preserved in a large range of temperatures that include the main phase transition of lipid bilayer and (ii) the bilayer hydration, as reported by Laurdan, increases approximately 8 times from the gel phase to the liquid crystalline one, a result that fits with other reports, providing a more realistic description. In addition, we propose a new parameter to globally evaluate Laurdan emission spectra with the prospect of acquiring a larger range of values than the classical "generalized polarization".


Asunto(s)
2-Naftilamina/análogos & derivados , Lauratos/química , Espectrometría de Fluorescencia/métodos , Estadística como Asunto/métodos , 2-Naftilamina/química , Algoritmos , Calibración , Membrana Celular/química , Membrana Dobles de Lípidos/química , Solventes/química
18.
Toxins (Basel) ; 15(7)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505728

RESUMEN

Cancer is a multifaceted health issue that affects people globally and it is considered one of the leading causes of death with a high percentage of victims worldwide. In recent years, research studies have uncovered great advances in cancer diagnosis and treatment. But, there are still major drawbacks of the conventional therapies used including severe side effects, toxicity, and drug resistance. That is why it is critical to develop new drugs with advantages like low cytotoxicity and no treatment resistance to the cancer cells. Antimicrobial peptides (AMPs) have recently attracted attention as a novel therapeutic strategy for the treatment of various cancers, targeting tumor cells with less toxicity to normal tissues. The aim of the study was to discover alternate treatments that do not lead to cancer resistance and have fewer side effects. Here, we report the effects induced by several AMPs, Melittin, Cecropin A, and a Cecropin A-Melittin hybrid, against two human colorectal cancer-derived spheroids. To study the effects of the peptides, cell viability was investigated using MTT, LDH, and ATP assays. Furthermore, cellular senescence and cell cycle were investigated. We found that using different concentrations of these peptides affected the spheroids, their structure being highly compromised by reducing cell viability, and the increase in ATP and LDH levels. Also, the cells are arrested in the G2/M phase leading to an increase in senescent cells. We show that Melittin and the hybrid are most effective against the 3D colorectal cancer cells compared to Cecropin A.


Asunto(s)
Neoplasias Colorrectales , Meliteno , Humanos , Meliteno/farmacología , Péptidos Antimicrobianos , Neoplasias Colorrectales/tratamiento farmacológico , Adenosina Trifosfato , Antibacterianos/farmacología
19.
Int J Pharm ; 642: 123169, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37356506

RESUMEN

In recent years, the unprecedented rise of bacterial antibiotic resistance together with the lack of adequate therapies have made the treatment of skin infections and chronic wounds challenging, urging the scientific community to focus on the development of new and more efficient treatment strategies. In this context, there is a growing interest in the use of natural molecules with antimicrobial features, capable of supporting wound healing i.e., antimicrobial peptides (AMPs), for the treatment of skin and soft tissue infections. In this review, we give a short overview of the bacterial skin infections as well as some of the classic treatments used for topical application. We then summarize the AMPs classes, stressing the importance of the appropriate selection of the peptides based on their characteristics and physicochemical properties in order to maximize the antibacterial efficacy of the therapeutic systems against multi-drug resistant pathogens. Additionally, the present paper provides a comprehensive and rigorous assessment of the latest clinical trials investigating the efficacy of AMPs in the treatment of skin and soft tissue infections, highlighting the relevant outcomes. Seeking to obtain novel and improved compounds with synergistic activity, while also decreasing some of the known side effects of AMPs, we present two employed strategies using AMPs: (i) AMPs-conjugated nanosystems for systemic and topical drug delivery systems and (ii) antibiotics-peptide conjugates as a strategy to overcome antibiotics resistance. Finally, an important property of some of the AMPs used in wound treatment is highlighted: their ability to help in wound healing by generally promoting cell proliferation and migration, and in some cases re-epithelialization and angiogenesis among others. Thus, as the pursuit of improvement is an ongoing effort, this work presents the advances made in the treatment of skin and soft tissue infections along with their advantages and limitations, while the still remaining challenges are addressed by providing future prospects and strategies to overcome them.


Asunto(s)
Antiinfecciosos , Infecciones de los Tejidos Blandos , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Antimicrobianos , Infecciones de los Tejidos Blandos/tratamiento farmacológico , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/química
20.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571071

RESUMEN

In this study, novel materials have been obtained via a dual covalent and ionic crosslinking strategies, leading to the formation of a fully interpenetrated polymeric network with remarkable mechanical performances as drug delivery platforms for dermal patches. The polymeric network was obtained by the free-radical photopolymerization of N-vinylpyrrolidone using tri(ethylene glycol) divinyl ether as crosslinker in the presence of sodium alginate (1%, weight%). The ionic crosslinking was achieved by the addition of Zn2+, ions which were coordinated by the alginate chains. Bentonite nanoclay was incorporated in hydrogel formulations to capitalize on its mechanical reinforcement and adsorptive capacity. TiO2 and ZnO nanoparticles were also included in two of the samples to evaluate their influence on the morphology, mechanical properties and/or the antimicrobial activity of the hydrogels. The double-crosslinked nanocomposite hydrogels presented a good tensile resistance (1.5 MPa at 70% strain) and compression resistance (12.5 MPa at a strain of 70%). Nafcillin was loaded into nanocomposite hydrogel films with a loading efficiency of up to 30%. The drug release characteristics were evaluated, and the profile was fitted by mathematical models that describe the physical processes taking place during the drug transfer from the polymer to a PBS (phosphate-buffered saline) solution. Depending on the design of the polymeric network and the nanofillers included, it was demonstrated that the nafcillin loaded into the nanocomposite hydrogel films ensured a high to moderate activity against S. aureus and S. pyogenes and no activity against E. coli. Furthermore, it was demonstrated that the presence of zinc ions in these polymeric matrices can be correlated with the inactivation of E. coli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA