Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 167(2): 341-354.e12, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27667684

RESUMEN

Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social disorders. Strikingly, rare biallelic point mutations-identified by whole-genome and targeted "HAR-ome" sequencing-showed a significant excess in individuals with ASD whose parents share common ancestry compared to familial controls, suggesting a contribution in 5% of consanguineous ASD cases. Using chromatin interaction sequencing, massively parallel reporter assays (MPRA), and transgenic mice, we identified disease-linked, biallelic HAR mutations in active enhancers for CUX1, PTBP2, GPC4, CDKL5, and other genes implicated in neural function, ASD, or both. Our data provide genetic evidence that specific HARs are essential for normal development, consistent with suggestions that their evolutionary changes may have altered social and/or cognitive behavior. PAPERCLIP.


Asunto(s)
Trastorno del Espectro Autista/genética , Cognición , Predisposición Genética a la Enfermedad , Neurogénesis/genética , Mutación Puntual , Conducta Social , Alelos , Animales , Corteza Cerebral/metabolismo , Dosificación de Gen , Variación Genética , Genoma Humano , Proteínas de Homeodominio/genética , Humanos , Intrones , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Sitios de Carácter Cuantitativo , Elementos Reguladores de la Transcripción , Proteínas Represoras/genética , Factores de Transcripción
2.
Nature ; 556(7701): 370-375, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29643508

RESUMEN

The human cerebral cortex is distinguished by its large size and abundant gyrification, or folding. However, the evolutionary mechanisms that drive cortical size and structure are unknown. Although genes that are essential for cortical developmental expansion have been identified from the genetics of human primary microcephaly (a disorder associated with reduced brain size and intellectual disability) 1 , studies of these genes in mice, which have a smooth cortex that is one thousand times smaller than the cortex of humans, have provided limited insight. Mutations in abnormal spindle-like microcephaly-associated (ASPM), the most common recessive microcephaly gene, reduce cortical volume by at least 50% in humans2-4, but have little effect on the brains of mice5-9; this probably reflects evolutionarily divergent functions of ASPM10,11. Here we used genome editing to create a germline knockout of Aspm in the ferret (Mustela putorius furo), a species with a larger, gyrified cortex and greater neural progenitor cell diversity12-14 than mice, and closer protein sequence homology to the human ASPM protein. Aspm knockout ferrets exhibit severe microcephaly (25-40% decreases in brain weight), reflecting reduced cortical surface area without significant change in cortical thickness, as has been found in human patients3,4, suggesting that loss of 'cortical units' has occurred. The cortex of fetal Aspm knockout ferrets displays a very large premature displacement of ventricular radial glial cells to the outer subventricular zone, where many resemble outer radial glia, a subtype of neural progenitor cells that are essentially absent in mice and have been implicated in cerebral cortical expansion in primates12-16. These data suggest an evolutionary mechanism by which ASPM regulates cortical expansion by controlling the affinity of ventricular radial glial cells for the ventricular surface, thus modulating the ratio of ventricular radial glial cells, the most undifferentiated cell type, to outer radial glia, a more differentiated progenitor.


Asunto(s)
Evolución Biológica , Corteza Cerebral/anatomía & histología , Corteza Cerebral/metabolismo , Hurones , Eliminación de Gen , Microcefalia/genética , Microcefalia/patología , Proteínas del Tejido Nervioso/deficiencia , Secuencia de Aminoácidos , Animales , Proteínas de Unión a Calmodulina/deficiencia , Proteínas de Unión a Calmodulina/metabolismo , Centrosoma/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Femenino , Hurones/anatomía & histología , Hurones/genética , Edición Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Mutación de Línea Germinal , Humanos , Masculino , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Tamaño de los Órganos , Transcripción Genética
3.
Annu Rev Genomics Hum Genet ; 19: 177-200, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29799801

RESUMEN

Primary microcephaly (MCPH, for "microcephaly primary hereditary") is a disorder of brain development that results in a head circumference more than 3 standard deviations below the mean for age and gender. It has a wide variety of causes, including toxic exposures, in utero infections, and metabolic conditions. While the genetic microcephaly syndromes are relatively rare, studying these syndromes can reveal molecular mechanisms that are critical in the regulation of neural progenitor cells, brain size, and human brain evolution. Many of the causative genes for MCPH encode centrosomal proteins involved in centriole biogenesis. However, other MCPH genes fall under different mechanistic categories, notably DNA replication and repair. Recent gene discoveries and functional studies have implicated novel cellular processes, such as cytokinesis, centromere and kinetochore function, transmembrane or intracellular transport, Wnt signaling, and autophagy, as well as the apical polarity complex. Thus, MCPH genes implicate a wide variety of molecular and cellular mechanisms in the regulation of cerebral cortical size during development.


Asunto(s)
Predisposición Genética a la Enfermedad , Microcefalia/genética , Centriolos/patología , Reparación del ADN , Replicación del ADN , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuroglía/patología
4.
Cancer Res ; 83(18): 2993-3000, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37384617

RESUMEN

Despite recent advances in molecularly targeted therapies and immunotherapies, the effective treatment of advanced-stage cancers remains a largely unmet clinical need. Identifying driver mechanisms of cancer aggressiveness can lay the groundwork for the development of breakthrough therapeutic strategies. Assembly factor for spindle microtubules (ASPM) was initially identified as a centrosomal protein that regulates neurogenesis and brain size. Mounting evidence has demonstrated the pleiotropic roles of ASPM in mitosis, cell-cycle progression, and DNA double-strand breaks (DSB) repair. Recently, the exon 18-preserved isoform 1 of ASPM has emerged as a critical regulator of cancer stemness and aggressiveness in various malignant tumor types. Here, we describe the domain compositions of ASPM and its transcript variants and overview their expression patterns and prognostic significance in cancers. A summary is provided of recent progress in the molecular elucidation of ASPM as a regulatory hub of development- and stemness-associated signaling pathways, such as the Wnt, Hedgehog, and Notch pathways, and of DNA DSB repair in cancer cells. The review emphasizes the potential utility of ASPM as a cancer-agnostic and pathway-informed prognostic biomarker and therapeutic target.


Asunto(s)
Neoplasias , Proteínas del Tejido Nervioso , Humanos , Proteínas del Tejido Nervioso/metabolismo , Neoplasias/genética , Transducción de Señal , Mitosis , ADN
5.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961182

RESUMEN

The mammalian neocortex differs vastly in size and complexity between mammalian species, yet the mechanisms that lead to an increase in brain size during evolution are not known. We show here that two transcription factors coordinate gene expression programs in progenitor cells of the neocortex to regulate their proliferative capacity and neuronal output in order to determine brain size. Comparative studies in mice, ferrets and macaques demonstrate an evolutionary conserved function for these transcription factors to regulate progenitor behaviors across the mammalian clade. Strikingly, the two transcriptional regulators control the expression of large numbers of genes linked to microcephaly suggesting that transcriptional deregulation as an important determinant of the molecular pathogenesis of microcephaly, which is consistent with the finding that genetic manipulation of the two transcription factors leads to severe microcephaly. Summary: The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species 1,2 . The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors 2-5 and the emergence of indirect neurogenesis 6 during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological and psychiatric disorders remain largely unknown. Here we show that the transcription factors BRN1 (POU3F3) and BRN2 (POU3F2) act as master regulators of the transcriptional programs in progenitors linked to neuronal specification and neocortex expansion. Using genetically modified lissencephalic and gyrencephalic animals, we found that BRN1/2 establish transcriptional programs in neocortical progenitors that control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in genetically modified mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus establish a mechanistic link between BRN1/2 and genes linked to microcephaly and demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.

6.
Sci Rep ; 10(1): 21516, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33299078

RESUMEN

GPR56, a member of the adhesion G protein-coupled receptor family, is abundantly expressed in cells of the developing cerebral cortex, including neural progenitor cells and developing neurons. The human GPR56 gene has multiple presumptive promoters that drive the expression of the GPR56 protein in distinct patterns. Similar to coding mutations of the human GPR56 gene that may cause GPR56 dysfunction, a 15-bp homozygous deletion in the cis-regulatory element upstream of the noncoding exon 1 of GPR56 (e1m) leads to the cerebral cortex malformation and epilepsy. To clarify the expression profile of the e1m promoter-driven GPR56 in primate brain, we generated a transgenic marmoset line in which EGFP is expressed under the control of the human minimal e1m promoter. In contrast to the endogenous GPR56 protein, which is highly enriched in the ventricular zone of the cerebral cortex, EGFP is mostly expressed in developing neurons in the transgenic fetal brain. Furthermore, EGFP is predominantly expressed in GABAergic neurons, whereas the total GPR56 protein is evenly expressed in both GABAergic and glutamatergic neurons, suggesting the GABAergic neuron-preferential activity of the minimal e1m promoter. These results indicate a possible pathogenic role for GABAergic neuron in the cerebral cortex of patients with GPR56 mutations.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Regiones Promotoras Genéticas/genética , Receptores Acoplados a Proteínas G/genética , Animales , Animales Modificados Genéticamente/genética , Secuencia de Bases/genética , Encéfalo/metabolismo , Callithrix/genética , Callithrix/metabolismo , Movimiento Celular/genética , Corteza Cerebral/metabolismo , Expresión Génica/genética , Homocigoto , Humanos , Mutación/genética , Células-Madre Neurales/metabolismo , Polimicrogiria/genética , Polimicrogiria/metabolismo , Polimicrogiria/patología , Receptores Acoplados a Proteínas G/metabolismo , Eliminación de Secuencia/genética
7.
Neuron ; 47(1): 29-41, 2005 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-15996546

RESUMEN

We present evidence for a specific role of p53 in the mitochondria-associated cellular dysfunction and behavioral abnormalities of Huntington's disease (HD). Mutant huntingtin (mHtt) with expanded polyglutamine (polyQ) binds to p53 and upregulates levels of nuclear p53 as well as p53 transcriptional activity in neuronal cultures. The augmentation is specific, as it occurs with mHtt but not mutant ataxin-1 with expanded polyQ. p53 levels are also increased in the brains of mHtt transgenic (mHtt-Tg) mice and HD patients. Perturbation of p53 by pifithrin-alpha, RNA interference, or genetic deletion prevents mitochondrial membrane depolarization and cytotoxicity in HD cells, as well as the decreased respiratory complex IV activity of mHtt-Tg mice. Genetic deletion of p53 suppresses neurodegeneration in mHtt-Tg flies and neurobehavioral abnormalities of mHtt-Tg mice. Our findings suggest that p53 links nuclear and mitochondrial pathologies characteristic of HD.


Asunto(s)
Conducta/fisiología , Enfermedad de Huntington/patología , Enfermedad de Huntington/psicología , Proteínas del Tejido Nervioso/fisiología , Neuronas/patología , Proteínas Nucleares/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis/efectos de los fármacos , Conducta Animal/fisiología , Northern Blotting , Supervivencia Celular/fisiología , Densitometría , Drosophila , Transporte de Electrón/genética , Transporte de Electrón/fisiología , Reacción de Fuga/fisiología , Eliminación de Gen , Genes Reporteros/genética , Humanos , Proteína Huntingtina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/fisiología , Proteínas del Tejido Nervioso/toxicidad , Proteínas Nucleares/toxicidad , Plásmidos/genética , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Transcripción Genética/fisiología
8.
Neuron ; 92(4): 813-828, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27974163

RESUMEN

Mutations in several genes encoding centrosomal proteins dramatically decrease the size of the human brain. We show that Aspm (abnormal spindle-like, microcephaly-associated) and Wdr62 (WD repeat-containing protein 62) interact genetically to control brain size, with mice lacking Wdr62, Aspm, or both showing gene dose-related centriole duplication defects that parallel the severity of the microcephaly and increased ectopic basal progenitors, suggesting premature delamination from the ventricular zone. Wdr62 and Aspm localize to the proximal end of the mother centriole and interact physically, with Wdr62 required for Aspm localization, and both proteins, as well as microcephaly protein Cep63, required to localize CENPJ/CPAP/Sas-4, a final common target. Unexpectedly, Aspm and Wdr62 are required for normal apical complex localization and apical epithelial structure, providing a plausible unifying mechanism for the premature delamination and precocious differentiation of progenitors. Together, our results reveal links among centrioles, apical proteins, and cell fate, and illuminate how alterations in these interactions can dynamically regulate brain size.


Asunto(s)
Encéfalo/embriología , Proteínas de Unión a Calmodulina/genética , Proteínas de Ciclo Celular/genética , Diferenciación Celular/genética , Centriolos/metabolismo , Microcefalia/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Biogénesis de Organelos , Animales , Western Blotting , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Inmunoprecipitación , Espectrometría de Masas , Ratones , Células Madre Embrionarias de Ratones , Mutación
9.
Dev Cell ; 32(4): 423-34, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25710529

RESUMEN

The development and function of our brain are governed by a genetic blueprint, which reflects dynamic changes over the history of evolution. Recent progress in genetics and genomics, facilitated by next-generation sequencing and single-cell sorting, has identified numerous genomic loci that are associated with a neuroanatomical or neurobehavioral phenotype. Here, we review some of the genetic changes in both protein-coding and noncoding regions that affect brain development and evolution, as well as recent progress in brain transcriptomics. Understanding these genetic changes may provide novel insights into neurological and neuropsychiatric disorders, such as autism and schizophrenia.


Asunto(s)
Evolución Biológica , Encéfalo/metabolismo , Bases de Datos Genéticas , Regulación de la Expresión Génica/genética , Genómica , Fenotipo , Animales , Humanos
10.
Science ; 343(6172): 764-8, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24531968

RESUMEN

The human neocortex has numerous specialized functional areas whose formation is poorly understood. Here, we describe a 15-base pair deletion mutation in a regulatory element of GPR56 that selectively disrupts human cortex surrounding the Sylvian fissure bilaterally including "Broca's area," the primary language area, by disrupting regional GPR56 expression and blocking RFX transcription factor binding. GPR56 encodes a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor required for normal cortical development and is expressed in cortical progenitor cells. GPR56 expression levels regulate progenitor proliferation. GPR56 splice forms are highly variable between mice and humans, and the regulatory element of gyrencephalic mammals directs restricted lateral cortical expression. Our data reveal a mechanism by which control of GPR56 expression pattern by multiple alternative promoters can influence stem cell proliferation, gyral patterning, and, potentially, neocortex evolution.


Asunto(s)
Empalme Alternativo , Tipificación del Cuerpo/genética , Corteza Cerebral/embriología , Células-Madre Neurales/fisiología , Receptores Acoplados a Proteínas G/genética , Animales , Secuencia de Bases , Evolución Biológica , Gatos , Proliferación Celular , Corteza Cerebral/anatomía & histología , Corteza Cerebral/citología , Codón sin Sentido , Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/citología , Lóbulo Frontal/embriología , Variación Genética , Haplotipos , Humanos , Ratones , Datos de Secuencia Molecular , Células-Madre Neurales/citología , Linaje , Regiones Promotoras Genéticas/genética , Eliminación de Secuencia
11.
Ann N Y Acad Sci ; 1333: 43-64, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25424900

RESUMEN

The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a GPCR autoproteolysis-inducing (GAIN) domain that mediates autoproteolytic cleavage at the GPCR autoproteolysis site motif to generate N- and a C-terminal fragments (NTF and CTF, respectively) during protein maturation. Subsequently, the NTF and CTF are associated noncovalently as a heterodimer at the plasma membrane. While the biological function of the GAIN domain-mediated autocleavage is not fully understood, mounting evidence suggests that the NTF and CTF possess distinct biological activities in addition to their function as a receptor unit. We discuss recent advances in understanding the biological functions, signaling mechanisms, and disease associations of the aGPCRs.


Asunto(s)
Adhesión Celular , Receptores Acoplados a Proteínas G/fisiología , Animales , Discapacidades del Desarrollo/genética , Humanos , Mutación , Neoplasias/genética , Transducción de Señal , Sinapsis/fisiología
13.
Nat Cell Biol ; 10(7): 866-73, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18552833

RESUMEN

Besides its role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) initiates a cell death cascade. Diverse apoptotic stimuli activate inducible nitric oxide synthase (iNOS) or neuronal NOS (nNOS), with the generated nitric oxide (NO) S-nitrosylating GAPDH, abolishing its catalytic activity and conferring on it the ability to bind to Siah1, an E3-ubiquitin-ligase with a nuclear localization signal (NLS). The GAPDH-Siah1 protein complex, in turn, translocates to the nucleus and mediates cell death; these processes are blocked by procedures that interfere with GAPDH-Siah1 binding. Nuclear events induced by GAPDH to kill cells have been obscure. Here we show that nuclear GAPDH is acetylated at Lys 160 by the acetyltransferase p300/CREB binding protein (CBP) through direct protein interaction, which in turn stimulates the acetylation and catalytic activity of p300/CBP. Consequently, downstream targets of p300/CBP, such as p53 (Refs 10,11,12,13,14,15), are activated and cause cell death. A dominant-negative mutant GAPDH with the substitution of Lys 160 to Arg (GAPDH-K160R) prevents activation of p300/CBP, blocks induction of apoptotic genes and decreases cell death. Our findings reveal a pathway in which NO-induced nuclear GAPDH mediates cell death through p300/CBP.


Asunto(s)
Apoptosis/fisiología , Núcleo Celular/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Óxido Nítrico/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Línea Celular , Activación Enzimática , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factores de Transcripción p300-CBP/genética
14.
Proc Natl Acad Sci U S A ; 103(10): 3887-9, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16505364

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) participates in a cell death cascade wherein a variety of stimuli activate nitric oxide (NO) synthases with NO nitrosylating GAPDH, conferring on it the ability to bind to Siah, an E3-ubiquitin-ligase, whose nuclear localization signal enables the GAPDH/Siah protein complex to translocate to the nucleus where degradation of Siah targets elicits cell death. R-(-)-Deprenyl (deprenyl) ameliorates the progression of disability in early Parkinson's disease and also has neuroprotective actions. We show that deprenyl and a related agent, TCH346, in subnanomolar concentrations, prevent S-nitrosylation of GAPDH, the binding of GAPDH to Siah, and nuclear translocation of GAPDH. In mice treated with the dopamine neuronal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), low doses of deprenyl prevent binding of GAPDH and Siah1 in the dopamine-enriched corpus striatum.


Asunto(s)
Apoptosis/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Animales , Antiparkinsonianos/farmacología , Apoptosis/fisiología , Línea Celular , Gliceraldehído-3-Fosfato Deshidrogenasas/fisiología , Humanos , Técnicas In Vitro , Intoxicación por MPTP/patología , Intoxicación por MPTP/fisiopatología , Masculino , Ratones , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Degeneración Nerviosa/prevención & control , Óxido Nítrico/metabolismo , Proteínas Nucleares/fisiología , Oxepinas/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/farmacología , Ubiquitina-Proteína Ligasas/fisiología
15.
Proc Natl Acad Sci U S A ; 103(9): 3405-9, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16492755

RESUMEN

The pathophysiology of Huntington's disease reflects actions of mutant Huntingtin (Htt) (mHtt) protein with polyglutamine repeats, whose N-terminal fragment translocates to the nucleus to elicit neurotoxicity. We establish that the nuclear translocation and associated cytotoxicity of mHtt reflect a ternary complex of mHtt with GAPDH and Siah1, a ubiquitin-E3-ligase. Overexpression of GAPDH or Siah1 enhances nuclear translocation of mHtt and cytotoxicity, whereas GAPDH mutants that cannot bind Siah1 prevent translocation. Depletion of GAPDH or Siah1 by RNA interference diminishes nuclear translocation of mHtt.


Asunto(s)
Núcleo Celular/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular , Citoplasma/metabolismo , Regulación de la Expresión Génica , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Humanos , Enfermedad de Huntington
16.
J Biol Chem ; 280(2): 1634-40, 2005 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-15533939

RESUMEN

Diphosphoinositol pentakisphosphate (InsP7) and bis-diphosphoinositol tetrakisphosphate contain pyrophosphate bonds. InsP7 is formed from inositol hexakisphosphate (InsP6) by a family of three inositol hexakisphosphate kinases (InsP6K). In this study we establish one of the InsP6Ks, InsP6K2, as a physiologic mediator of cell death. Overexpression of wild-type InsP6K2 augments the cytotoxic actions of multiple cell stressors in diverse cell lines, whereas transfection with a dominant negative InsP6K2 decreases cell death. During cell death, InsP6 kinase activity is enhanced, and intracellular InsP7 level is augmented. Deletion of InsP6K2 but not the other forms of InsP6K diminishes cell death, suggesting that InsP6K2 is the major InsP6 kinase involved in cell death. Cytotoxicity is associated with a translocation of InsP6K2 from nuclei to mitochondria, whereas the intracellular localization of the other isoforms of the enzyme does not change. The present study provides compelling evidence that endogenous InsP6K2, by generating InsP7, provides physiologic regulation of the apoptotic process.


Asunto(s)
Apoptosis , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Cisplatino/farmacología , Silenciador del Gen , Humanos , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Mitocondrias/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Estaurosporina/farmacología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA