Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(10): e57, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37026484

RESUMEN

Mosaic mutations can be used to track cell ancestries and reconstruct high-resolution lineage trees during cancer progression and during development, starting from the first cell divisions of the zygote. However, this approach requires sampling and analyzing the genomes of multiple cells, which can be redundant in lineage representation, limiting the scalability of the approach. We describe a strategy for cost- and time-efficient lineage reconstruction using clonal induced pluripotent stem cell lines from human skin fibroblasts. The approach leverages shallow sequencing coverage to assess the clonality of the lines, clusters redundant lines and sums their coverage to accurately discover mutations in the corresponding lineages. Only a fraction of lines needs to be sequenced to high coverage. We demonstrate the effectiveness of this approach for reconstructing lineage trees during development and in hematologic malignancies. We discuss and propose an optimal experimental design for reconstructing lineage trees.


Asunto(s)
Linaje de la Célula , Neoplasias , Programas Informáticos , Humanos , Células Germinativas , Mutación , Neoplasias/patología
2.
Genome Res ; 30(12): 1695-1704, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33122304

RESUMEN

Somatic mosaicism, manifesting as single nucleotide variants (SNVs), mobile element insertions, and structural changes in the DNA, is a common phenomenon in human brain cells, with potential functional consequences. Using a clonal approach, we previously detected 200-400 mosaic SNVs per cell in three human fetal brains (15-21 wk postconception). However, structural variation in the human fetal brain has not yet been investigated. Here, we discover and validate four mosaic structural variants (SVs) in the same brains and resolve their precise breakpoints. The SVs were of kilobase scale and complex, consisting of deletion(s) and rearranged genomic fragments, which sometimes originated from different chromosomes. Sequences at the breakpoints of these rearrangements had microhomologies, suggesting their origin from replication errors. One SV was found in two clones, and we timed its origin to ∼14 wk postconception. No large scale mosaic copy number variants (CNVs) were detectable in normal fetal human brains, suggesting that previously reported megabase-scale CNVs in neurons arise at later stages of development. By reanalysis of public single nuclei data from adult brain neurons, we detected an extrachromosomal circular DNA event. Our study reveals the existence of mosaic SVs in the developing human brain, likely arising from cell proliferation during mid-neurogenesis. Although relatively rare compared to SNVs and present in ∼10% of neurons, SVs in developing human brain affect a comparable number of bases in the genome (∼6200 vs. ∼4000 bp), implying that they may have similar functional consequences.


Asunto(s)
Encéfalo/embriología , ADN Circular/genética , Variación Estructural del Genoma , Análisis de Secuencia de ADN/métodos , Evolución Clonal , Femenino , Técnicas de Genotipaje , Edad Gestacional , Humanos , Mosaicismo , Neurogénesis , Embarazo
3.
PLoS Comput Biol ; 18(4): e1009487, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35442945

RESUMEN

Accurate discovery of somatic mutations in a cell is a challenge that partially lays in immaturity of dedicated analytical approaches. Approaches comparing a cell's genome to a control bulk sample miss common mutations, while approaches to find such mutations from bulk suffer from low sensitivity. We developed a tool, All2, which enables accurate filtering of mutations in a cell without the need for data from bulk(s). It is based on pair-wise comparisons of all cells to each other where every call for base pair substitution and indel is classified as either a germline variant, mosaic mutation, or false positive. As All2 allows for considering dropped-out regions, it is applicable to whole genome and exome analysis of cloned and amplified cells. By applying the approach to a variety of available data, we showed that its application reduces false positives, enables sensitive discovery of high frequency mutations, and is indispensable for conducting high resolution cell lineage tracing.


Asunto(s)
Exoma , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL/genética , Mutación/genética , Secuenciación del Exoma
5.
Nature ; 526(7571): 75-81, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26432246

RESUMEN

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Mapeo Físico de Cromosoma , Secuencia de Aminoácidos , Predisposición Genética a la Enfermedad , Genética Médica , Genética de Población , Estudio de Asociación del Genoma Completo , Genómica , Genotipo , Haplotipos/genética , Homocigoto , Humanos , Datos de Secuencia Molecular , Tasa de Mutación , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia/genética
6.
BMC Bioinformatics ; 21(1): 521, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183232

RESUMEN

BACKGROUND: The study of mosaic mutation is important since it has been linked to cancer and various disorders. Single cell sequencing has become a powerful tool to study the genome of individual cells for the detection of mosaic mutations. The amount of DNA in a single cell needs to be amplified before sequencing and multiple displacement amplification (MDA) is widely used owing to its low error rate and long fragment length of amplified DNA. However, the phi29 polymerase used in MDA is sensitive to template fragmentation and presence of sites with DNA damage that can lead to biases such as allelic imbalance, uneven coverage and over representation of C to T mutations. It is therefore important to select cells with uniform amplification to decrease false positives and increase sensitivity for mosaic mutation detection. RESULTS: We propose a method, Scellector (single cell selector), which uses haplotype information to detect amplification quality in shallow coverage sequencing data. We tested Scellector on single human neuronal cells, obtained in vitro and amplified by MDA. Qualities were estimated from shallow sequencing with coverage as low as 0.3× per cell and then confirmed using 30× deep coverage sequencing. The high concordance between shallow and high coverage data validated the method. CONCLUSION: Scellector can potentially be used to rank amplifications obtained from single cell platforms relying on a MDA-like amplification step, such as Chromium Single Cell profiling solution.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , Análisis de la Célula Individual/métodos , Diferenciación Celular , ADN/química , ADN/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
7.
Carcinogenesis ; 36(12): 1561-71, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26442525

RESUMEN

Epithelial ovarian cancer (EOC) commonly acquires resistance to chemotherapy, and this is the major obstacle to the better prognosis. Elucidating the molecular targets altered by chemotherapy is critically required to understand and overcome drug resistance. As a drug combination including paclitaxel is a prevalent prescription for treatment of EOC, to uncover gene expression altered in paclitaxel-resistant EOC, we analyzed multidirectional microarray profiles in both EOC cell lines and patients with paclitaxel resistance. Cyclin-dependent kinase 1 (CDK1) was found to be a potential target of transcription factors to regulate paclitaxel resistance. As a result of the subsequent pharmacogenomics analysis, CDK1 inhibitor alsterpaullone was also indicated as a promising chemical that may be used in combinatorial therapies to reverse paclitaxel-induced chemoresistance. Although a CDK1 inhibitor has the potential to kill cancer cells, short-term treatment over 2 weeks at sublethal doses effectively induced cell death only upon additional treatment with paclitaxel. A prominent reduction in the tumor growth rate was observed upon paclitaxel subsequent to alsterpaullone treatment in EOC xenograft model. Thus, we suggest that inhibition of CDK1 with alsterpaullone may be a novel therapeutic method to reverse paclitaxel-induced resistance in ovarian cancer cells.


Asunto(s)
Antineoplásicos/farmacología , Benzazepinas/farmacología , Quinasas Ciclina-Dependientes/metabolismo , Indoles/farmacología , Neoplasias Glandulares y Epiteliales/enzimología , Neoplasias Ováricas/enzimología , Paclitaxel/farmacología , Animales , Apoptosis , Proteína Quinasa CDC2 , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Ratones Endogámicos C57BL , Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
8.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38948757

RESUMEN

Little is known about the origin of germ cells in humans. We previously leveraged post-zygotic mutations to reconstruct zygote-rooted cell lineage ancestry trees in a phenotypically normal woman, termed NC0. Here, by sequencing the genome of her children and their father, we analyzed the transmission of early pregastrulation lineages and corresponding mutations across human generations. We found that the germline in NC0 is polyclonal and is founded by at least two cells likely descending from the two blastomeres arising from the first zygotic cleavage. Analyses of public data from several multi-children families and from 1,934 familial quads confirmed this finding in larger cohorts, revealing that known imbalances of up to 90:10 in early lineages allocation in somatic tissues are not reflected in transmission to offspring, establishing a fundamental difference in lineage allocation between the soma and the germline. Analyses of all the data consistently suggest that germline has a balanced 50:50 lineage allocation from the first two blastomeres.

9.
CRISPR J ; 6(2): 176-182, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071670

RESUMEN

The CRISPR-Cas9 system has enabled researchers to precisely modify/edit the sequence of a genome. A typical editing experiment consists of two steps: (1) editing cultured cells; (2) cell cloning and selection of clones with and without intended edit, presumed to be isogenic. The application of CRISPR-Cas9 system may result in off-target edits, whereas cloning will reveal culture-acquired mutations. We analyzed the extent of the former and the latter by whole genome sequencing in three experiments involving separate genomic loci and conducted by three independent laboratories. In all experiments we hardly found any off-target edits, whereas detecting hundreds to thousands of single nucleotide mutations unique to each clone after relatively short culture of 10-20 passages. Notably, clones also differed in copy number alterations (CNAs) that were several kb to several mb in size and represented the largest source of genomic divergence among clones. We suggest that screening of clones for mutations and CNAs acquired in culture is a necessary step to allow correct interpretation of DNA editing experiments. Furthermore, since culture associated mutations are inevitable, we propose that experiments involving derivation of clonal lines should compare a mix of multiple unedited lines and a mix of multiple edited lines.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Mutación , ADN
10.
Nat Biotechnol ; 41(6): 870-877, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36593400

RESUMEN

Mosaic variants (MVs) reflect mutagenic processes during embryonic development and environmental exposure, accumulate with aging and underlie diseases such as cancer and autism. The detection of noncancer MVs has been computationally challenging due to the sparse representation of nonclonally expanded MVs. Here we present DeepMosaic, combining an image-based visualization module for single nucleotide MVs and a convolutional neural network-based classification module for control-independent MV detection. DeepMosaic was trained on 180,000 simulated or experimentally assessed MVs, and was benchmarked on 619,740 simulated MVs and 530 independent biologically tested MVs from 16 genomes and 181 exomes. DeepMosaic achieved higher accuracy compared with existing methods on biological data, with a sensitivity of 0.78, specificity of 0.83 and positive predictive value of 0.96 on noncancer whole-genome sequencing data, as well as doubling the validation rate over previous best-practice methods on noncancer whole-exome sequencing data (0.43 versus 0.18). DeepMosaic represents an accurate MV classifier for noncancer samples that can be implemented as an alternative or complement to existing methods.


Asunto(s)
Exoma , Programas Informáticos , Secuenciación Completa del Genoma/métodos , Secuenciación del Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo de Nucleótido Simple/genética , Nucleótidos
11.
Sci Data ; 10(1): 813, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985666

RESUMEN

Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH). In addition to genomic data of affected and neurotypical brains, the BSMN also developed and validated a best practices somatic single nucleotide variant calling workflow through the analysis of reference brain tissue. These resources, which include >400 terabytes of data from 1087 subjects, are now available to the research community via the NIMH Data Archive (NDA) and are described here.


Asunto(s)
Trastornos Mentales , Humanos , Trastorno del Espectro Autista/genética , Encéfalo , Genómica , Mosaicismo , Genoma Humano , Trastornos Mentales/genética
12.
Nat Genet ; 55(2): 209-220, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36635388

RESUMEN

Malformations of cortical development (MCD) are neurological conditions involving focal disruptions of cortical architecture and cellular organization that arise during embryogenesis, largely from somatic mosaic mutations, and cause intractable epilepsy. Identifying the genetic causes of MCD has been a challenge, as mutations remain at low allelic fractions in brain tissue resected to treat condition-related epilepsy. Here we report a genetic landscape from 283 brain resections, identifying 69 mutated genes through intensive profiling of somatic mutations, combining whole-exome and targeted-amplicon sequencing with functional validation including in utero electroporation of mice and single-nucleus RNA sequencing. Genotype-phenotype correlation analysis elucidated specific MCD gene sets associated with distinct pathophysiological and clinical phenotypes. The unique single-cell level spatiotemporal expression patterns of mutated genes in control and patient brains indicate critical roles in excitatory neurogenic pools during brain development and in promoting neuronal hyperexcitability after birth.


Asunto(s)
Epilepsia , Malformaciones del Desarrollo Cortical , Humanos , Multiómica , Encéfalo/metabolismo , Epilepsia/genética , Mutación , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/metabolismo
13.
Science ; 377(6605): 511-517, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35901164

RESUMEN

We analyzed 131 human brains (44 neurotypical, 19 with Tourette syndrome, 9 with schizophrenia, and 59 with autism) for somatic mutations after whole genome sequencing to a depth of more than 200×. Typically, brains had 20 to 60 detectable single-nucleotide mutations, but ~6% of brains harbored hundreds of somatic mutations. Hypermutability was associated with age and damaging mutations in genes implicated in cancers and, in some brains, reflected in vivo clonal expansions. Somatic duplications, likely arising during development, were found in ~5% of normal and diseased brains, reflecting background mutagenesis. Brains with autism were associated with mutations creating putative transcription factor binding motifs in enhancer-like regions in the developing brain. The top-ranked affected motifs corresponded to MEIS (myeloid ectopic viral integration site) transcription factors, suggesting a potential link between their involvement in gene regulation and autism.


Asunto(s)
Envejecimiento , Trastorno Autístico , Encéfalo , Mutagénesis , Factores de Transcripción , Envejecimiento/genética , Trastorno Autístico/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Humanos , Mutación , Unión Proteica/genética , Factores de Transcripción/genética , Secuenciación Completa del Genoma
14.
BMC Bioinformatics ; 12 Suppl 1: S25, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21342555

RESUMEN

BACKGROUND: Gene set analysis is a powerful method of deducing biological meaning for an a priori defined set of genes. Numerous tools have been developed to test statistical enrichment or depletion in specific pathways or gene ontology (GO) terms. Major difficulties towards biological interpretation are integrating diverse types of annotation categories and exploring the relationships between annotation terms of similar information. RESULTS: GARNET (Gene Annotation Relationship NEtwork Tools) is an integrative platform for gene set analysis with many novel features. It includes tools for retrieval of genes from annotation database, statistical analysis & visualization of annotation relationships, and managing gene sets. In an effort to allow access to a full spectrum of amassed biological knowledge, we have integrated a variety of annotation data that include the GO, domain, disease, drug, chromosomal location, and custom-defined annotations. Diverse types of molecular networks (pathways, transcription and microRNA regulations, protein-protein interaction) are also included. The pair-wise relationship between annotation gene sets was calculated using kappa statistics. GARNET consists of three modules--gene set manager, gene set analysis and gene set retrieval, which are tightly integrated to provide virtually automatic analysis for gene sets. A dedicated viewer for annotation network has been developed to facilitate exploration of the related annotations. CONCLUSIONS: GARNET (gene annotation relationship network tools) is an integrative platform for diverse types of gene set analysis, where complex relationships among gene annotations can be easily explored with an intuitive network visualization tool (http://garnet.isysbio.org/ or http://ercsb.ewha.ac.kr/garnet/).


Asunto(s)
Bases de Datos Genéticas , Almacenamiento y Recuperación de la Información/métodos , Anotación de Secuencia Molecular , Programas Informáticos , Biología Computacional/métodos , Interpretación Estadística de Datos
15.
Science ; 371(6535): 1249-1253, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33737485

RESUMEN

Although cell lineage information is fundamental to understanding organismal development, very little direct information is available for humans. We performed high-depth (250×) whole-genome sequencing of multiple tissues from three individuals to identify hundreds of somatic single-nucleotide variants (sSNVs). Using these variants as "endogenous barcodes" in single cells, we reconstructed early embryonic cell divisions. Targeted sequencing of clonal sSNVs in different organs (about 25,000×) and in more than 1000 cortical single cells, as well as single-nucleus RNA sequencing and single-nucleus assay for transposase-accessible chromatin sequencing of ~100,000 cortical single cells, demonstrated asymmetric contributions of early progenitors to extraembryonic tissues, distinct germ layers, and organs. Our data suggest onset of gastrulation at an effective progenitor pool of about 170 cells and about 50 to 100 founders for the forebrain. Thus, mosaic mutations provide a permanent record of human embryonic development at very high resolution.


Asunto(s)
Linaje de la Célula , Gastrulación , Mutación , Células-Madre Neurales/citología , Prosencéfalo/citología , Adolescente , Adulto , División Celular , Células Clonales/citología , Desarrollo Embrionario/genética , Femenino , Gástrula/citología , Variación Genética , Estratos Germinativos/citología , Humanos , Masculino , Neuronas/citología , Organogénesis , Polimorfismo de Nucleótido Simple , Prosencéfalo/embriología , Análisis de la Célula Individual , Secuenciación Completa del Genoma
16.
Science ; 371(6535): 1245-1248, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33737484

RESUMEN

Mosaic mutations can be used to track cell lineages in humans. We used cell cloning to analyze embryonic cell lineages in two living individuals and a postmortem human specimen. Of 10 reconstructed postzygotic divisions, none resulted in balanced contributions of daughter lineages to tissues. In both living individuals, one of two lineages from the first cleavage was dominant across tissues, with 90% frequency in blood. We propose that the efficiency of DNA repair contributes to lineage imbalance. Allocation of lineages in postmortem brain correlated with anterior-posterior axis, associating lineage history with cell fate choices in embryos. We establish a minimally invasive framework for defining cell lineages in any living individual, which paves the way for studying their relevance in health and disease.


Asunto(s)
Blastómeros/citología , División Celular , Linaje de la Célula , Desarrollo Embrionario , Adulto , Anciano , Blastocisto/citología , Células Sanguíneas , Diferenciación Celular , Línea Celular , Reparación del ADN , Femenino , Feto/citología , Variación Genética , Genoma Humano , Humanos , Mutación INDEL , Células Madre Pluripotentes Inducidas/citología , Masculino , Células-Madre Neurales/citología , Polimorfismo de Nucleótido Simple
17.
Genome Biol ; 22(1): 92, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33781308

RESUMEN

BACKGROUND: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.


Asunto(s)
Encéfalo/metabolismo , Estudios de Asociación Genética , Variación Genética , Alelos , Mapeo Cromosómico , Biología Computacional/métodos , Estudios de Asociación Genética/métodos , Genómica/métodos , Células Germinativas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Especificidad de Órganos/genética , Polimorfismo de Nucleótido Simple
18.
Oncotarget ; 9(6): 6780-6792, 2018 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29467928

RESUMEN

Besides the classical evolutionary model of colorectal cancer (CRC) defined by the stepwise accumulation of mutations in which normal epithelium transforms through an intermediary polyp stage to cancer, a few studies have proposed alternative modes of evolution (MOE): early eruptive subclonal expansion, branching of the subclones in parallel evolution, and neutral evolution. However, frequencies of MOEs and their connection to mutational characteristics of cancer remain elusive. In this study, we analyzed patterns of somatic single nucleotide variations (SNVs) and copy number aberrations (CNAs) in CRC with residual polyp of origin from 13 patients in order to determine this relationship. For each MOE we defined an expected pattern with characteristic features of allele frequency distributions for SNVs in cancers and their matching adenomas. From these distinct patterns, we then assigned an MOE to each CRC case and found that stepwise progression was the most common (70% of cases). We found that CRC with the same MOE may exhibit different mutational spectra, suggesting that different mutational mechanisms can result in the same MOE. Inversely, cancers with different MOEs can have the same mutational spectrum, suggesting that the same mutational mechanism can lead to different MOEs. The types of somatic substitutions, distribution of CNAs across genome, and mutated pathways did not correlate with MOEs. As this could be due to small sample size, these relations warrant further investigation. Our study paves the way to connect MOE with clinical and mutational characteristics not only in CRC but also to neoplastic transformation in other cancers.

19.
Science ; 359(6375): 550-555, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29217587

RESUMEN

Somatic mosaicism in the human brain may alter function of individual neurons. We analyzed genomes of single cells from the forebrains of three human fetuses (15 to 21 weeks postconception) using clonal cell populations. We detected 200 to 400 single-nucleotide variations (SNVs) per cell. SNV patterns resembled those found in cancer cell genomes, indicating a role of background mutagenesis in cancer. SNVs with a frequency of >2% in brain were also present in the spleen, revealing a pregastrulation origin. We reconstructed cell lineages for the first five postzygotic cleavages and calculated a mutation rate of ~1.3 mutations per division per cell. Later in development, during neurogenesis, the mutation spectrum shifted toward oxidative damage, and the mutation rate increased. Both neurogenesis and early embryogenesis exhibit substantially more mutagenesis than adulthood.


Asunto(s)
Encéfalo/embriología , Gastrulación/genética , Mosaicismo , Mutagénesis , Tasa de Mutación , Neurogénesis/genética , Linaje de la Célula/genética , Genoma Humano , Humanos , Mutación , Neoplasias/genética , Neuronas , Polimorfismo de Nucleótido Simple , Análisis de la Célula Individual
20.
Sci Rep ; 8(1): 3161, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29453410

RESUMEN

The majority of colorectal cancer (CRC) arises from precursor lesions known as polyps. The molecular determinants that distinguish benign from malignant polyps remain unclear. To molecularly characterize polyps, we utilized Cancer Adjacent Polyp (CAP) and Cancer Free Polyp (CFP) patients. CAPs had tissues from the residual polyp of origin and contiguous cancer; CFPs had polyp tissues matched to CAPs based on polyp size, histology and dysplasia. To determine whether molecular features distinguish CAPs and CFPs, we conducted Whole Genome Sequencing, RNA-seq, and RRBS on over 90 tissues from 31 patients. CAPs had significantly more mutations, altered expression and hypermethylation compared to CFPs. APC was significantly mutated in both polyp groups, but mutations in TP53, FBXW7, PIK3CA, KIAA1804 and SMAD2 were exclusive to CAPs. We found significant expression changes between CAPs and CFPs in GREM1, IGF2, CTGF, and PLAU, and both expression and methylation alterations in FES and HES1. Integrative analyses revealed 124 genes with alterations in at least two platforms, and ERBB3 and E2F8 showed aberrations specific to CAPs across all platforms. These findings provide a resource of molecular distinctions between polyps with and without cancer, which have the potential to enhance the diagnosis, risk assessment and management of polyps.


Asunto(s)
Adenoma/genética , Neoplasias Colorrectales/genética , Metilación de ADN , Perfilación de la Expresión Génica , Genómica , Adenoma/patología , Neoplasias Colorrectales/patología , Humanos , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA