Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 26(60): 13652-13658, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32598040

RESUMEN

Binary transition-metal oxides (BTMOs) with hierarchical micro-nano-structures have attracted great interest as potential anode materials for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical cauliflower-like CoFe2 O4 (cl-CoFe2 O4 ) via a facile room-temperature co-precipitation method followed by post-synthetic annealing. The obtained cauliflower structure is constructed by the assembly of microrods, which themselves are composed of small nanoparticles. Such hierarchical micro-nano-structure can promote fast ion transport and stable electrode-electrolyte interfaces. As a result, the cl-CoFe2 O4 can deliver a high specific capacity (1019.9 mAh g-1 at 0.1 A g-1 ), excellent rate capability (626.0 mAh g-1 at 5 A g-1 ), and good cyclability (675.4 mAh g-1 at 4 A g-1 for over 400 cycles) as an anode material for LIBs. Even at low temperatures of 0 °C and -25 °C, the cl-CoFe2 O4 anode can deliver high capacities of 907.5 and 664.5 mAh g-1 at 100 mA g-1 , respectively, indicating its wide operating temperature. More importantly, the full-cell assembled with a commercial LiFePO4 cathode exhibits a high rate performance (214.2 mAh g-1 at 5000 mA g-1 ) and an impressive cycling performance (612.7 mAh g-1 over 140 cycles at 300 mA g-1 ) in the voltage range of 0.5-3.6 V. Kinetic analysis reveals that the electrochemical performance of cl-CoFe2 O4 is dominated by pseudocapacitive behavior, leading to fast Li+ insertion/extraction and good cycling life.

2.
J Colloid Interface Sci ; 667: 303-311, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640650

RESUMEN

Metal selenides have emerged as promising Na-storage anode materials owing to their substantial theoretical capacity and high cost-effectiveness. However, the application of metal selenides is hindered by inferior electronic conductivity, huge volume variation, and sluggish kinetics of ionic migration. In response to these challenges, herein, a hierarchical hollow tube consisting of FeSe2 nanosheets and Se quantum dots anchored within a carbon skeleton (HT-FeSe2/Se/C) is strategically engineered and synthesized. The most remarkable feature of HT-FeSe2/Se/C is the introduction of Se quantum dots, which could lead to high electron density near the Fermi level and significantly enhance the overall charge transfer capability of the electrode. Moreover, the distinctive hollow tubular structure enveloped by the carbon skeleton endows the HT-FeSe2/Se/C anode with robust structural stability and fast surface-controlled Na-storage kinetics. Consequently, the as-synthesized HT-FeSe2/Se/C demonstrates a reversible capacity of 253.5 mAh/g at a current density of 5 A/g and a high specific capacity of 343.9 mAh/g at 1 A/g after 100 cycles in sodium-ion batteries (SIBs). Furthermore, a full cell is assembled with HT-FeSe2/Se/C as the anode, and a vanadium-based cathode (Na3V2(PO4)2O2F), showcasing a high specific capacity of 118.1 mAh/g at 2 A/g. The excellent performance of HT-FeSe2/Se/C may hint at future material design strategies and advance the development and application of SIBs.

3.
Microsyst Nanoeng ; 6: 75, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34567685

RESUMEN

Potassium-ion batteries are an emerging energy storage technology that could be a promising alternative to lithium-ion batteries due to the abundance and low cost of potassium. Research on potassium-ion batteries has received considerable attention in recent years. With the progress that has been made, it is important yet challenging to discover electrode materials for potassium-ion batteries. Here, we report pyrrhotite Fe1-x S microcubes as a new anode material for this exciting energy storage technology. The anode delivers a reversible capacity of 418 mAh g-1 with an initial coulombic efficiency of ~70% at 50 mA g-1 and a great rate capability of 123 mAh g-1 at 6 A g-1 as well as good cyclability. Our analysis shows the structural stability of the anode after cycling and reveals surface-dominated K storage at high rates. These merits contribute to the obtained electrochemical performance. Our work may lead to a new class of anode materials based on sulfide chemistry for potassium storage and shed light on the development of new electrochemically active materials for ion storage in a wider range of energy applications.

4.
Nanoscale Horiz ; 4(1): 202-207, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32254157

RESUMEN

Defect and interlayer engineering is applied to exploit the large van der Waals gaps of transition metal dichalcogenides for potassium-ion batteries (KIBs). As a demonstrator, MoS2 nanoflowers with expanded interlayer spacing and defects in the basal planes are used as KIB anodes in the voltage range of 0.5-2.5 V, where an intercalation reaction rather than a conversion reaction takes place to store K-ions in the van der Waals gaps. The nanoflowers show enhanced K-storage performance compared to the defect-free counterpart that has a pristine interlayer spacing. Kinetic analysis verifies that the K-ion diffusion coefficient and surface charge storage are both enhanced in the applied voltage range of the intercalation reaction. The collective effects of expanded interlayer spacing and additionally exposed edges induced by the in-plane defects enable facile K-ion intercalation, rapid K-ion transport and promoted surface K-ion adsorption simultaneously.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA