Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(30): e2201359, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768281

RESUMEN

In this work, electrocatalytic upgrade of n-valeraldehyde to octane with higher activity and selectivity is achieved over Au single-atom catalysts (SACs)-NiMn2 O4 spinel synergetic composites. Experiments combined with density functional theory calculation collaboratively demonstrate that Au single-atoms occupy surface Ni2+ vacancies of NiMn2 O4 , which play a dominant role in n-valeraldehyde selective oxidation. A detailed investigation reveals that the initial n-valeraldehyde molecule preferentially adsorbs on the Mn tetrahedral site of NiMn2 O4 spinel synergetic structures, and the subsequent n-valeraldehyde molecule easily adsorbs on the Ni site. Specifically, Au single-atom surficial derivation over spinel lowers the adsorption energy (Eads ) of the initial n-valeraldehyde molecule, which will facilitate its adsorption on the Mn site of Au SACs-NiMn2 O4 . Furthermore, the single-atom Au surficial derivation not only alters the electronic structure of Au SACs-NiMn2 O4 but also lower the Eads of subsequent n-valeraldehyde molecule. Hence, the subsequent n-valeraldehyde molecules prefer adsorption on Au sites rather than Ni sites, and the process of two alkyl radicals originating from Mn-C4 H9 and Au-C4 H9 dimerization into an octane is accordingly accelerated. This work will provide an avenue for the rational design of SACs and supply a vital mechanism for understanding the electrocatalytic upgrade of n-valeraldehyde to octane.


Asunto(s)
Óxido de Magnesio , Octanos , Aldehídos , Óxido de Aluminio , Catálisis
2.
ACS Appl Mater Interfaces ; 15(10): 12915-12923, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863000

RESUMEN

Dichloromethane (CH2Cl2) hydrodechlorination to methane (CH4) is a promising approach to remove the halogenated contaminants and generate clean energy. In this work, rod-like nanostructured CuCo2O4 spinels with rich oxygen vacancies are designed for highly efficient electrochemical reduction dechlorination of dichloromethane. Microscopy characterizations revealed that the special rod-like nanostructure and rich oxygen vacancies can efficiently enhance surface area, electronic/ionic transport, and expose more active sites. The experimental tests demonstrated that CuCo2O4-3 with rod-like nanostructures outperformed other morphology of CuCo2O4 spinel nanostructures in catalytic activity and product selectivity. The highest methane production of 148.84 µmol in 4 h with a Faradaic efficiency of 21.61% at -2.94 V (vs SCE) is shown. Furthermore, the density function theory proved oxygen vacancies significantly decreased the energy barrier to promote the catalyst in the reaction and Ov-Cu was the main active site in dichloromethane hydrodechlorination. This work explores a promising way to synthesize the highly efficient electrocatalysts, which may be an effective catalyst for dichloromethane hydrodechlorination to methane.

3.
ACS Appl Mater Interfaces ; 15(5): 6631-6638, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36705573

RESUMEN

CuFe2O4 spinel has been considered as a promising catalyst for the electrochemical reaction, while the nature of the crystal phase on its intrinsic activity and the kind of active site need to be further explored. Herein, the crystal phase-dependent catalytic behavior and the main active sites of CuFe2O4 spinel for electrochemical dechlorination of 1,2-dichloroethane are carefully studied based on the combination of experiments and theoretical calculations. Cubic and tetragonal CuFe2O4 are successfully prepared by a facile sol-gel method combined with high temperature calcination. Impressively, CuFe2O4 with the cubic phase shows a higher activity and ethylene selectivity compared to CuFe2O4 with the tetragonal phase, suggesting a significant facilitation of electrocatalytic performance by the cubic crystal structure. Moreover, the octahedral Fe atom on the surface of cubic CuFe2O4(311) is the active site responsible to produce ethylene with the energy barrier of 0.40 eV. This work demonstrates the significance of crystal phase engineering for the optimization of electrocatalytic performance and offers an efficient strategy for the development of advanced electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA