Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell ; 38(2): 198-211.e8, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32559497

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is driven by co-existing mutations in KRAS and TP53. However, how these mutations collaborate to promote this cancer is unknown. Here, we uncover sequence-specific changes in RNA splicing enforced by mutant p53 which enhance KRAS activity. Mutant p53 increases expression of splicing regulator hnRNPK to promote inclusion of cytosine-rich exons within GTPase-activating proteins (GAPs), negative regulators of RAS family members. Mutant p53-enforced GAP isoforms lose cell membrane association, leading to heightened KRAS activity. Preventing cytosine-rich exon inclusion in mutant KRAS/p53 PDACs decreases tumor growth. Moreover, mutant p53 PDACs are sensitized to inhibition of splicing via spliceosome inhibitors. These data provide insight into co-enrichment of KRAS and p53 mutations and therapeutics targeting this mechanism in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Mutación , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Empalme del ARN , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tratamiento con ARN de Interferencia/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
2.
J Nucl Med ; 46(10): 1745-52, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16204726

RESUMEN

UNLABELLED: Our objective was to synthesize a recombinant protein (hnTf-VEGF [VEGF is vascular endothelial growth factor]) composed of VEGF(165) fused through a flexible polypeptide linker (GGGGS)(3) to the n-lobe of human transferrin (hnTf) for imaging angiogenesis. The hnTf domain allowed labeling with (111)In at a site remote from the VEGF receptor-binding domain. METHODS: DNA encoding hnTf, peptide linker (GGGGS)(3), and VEGF(165) genes were cloned into the Pichia pastoris vector pPICZalphaB to generate the pPICZalphaB-hnTF-VEGF plasmid. The expression vector was transformed into P. pastoris KM71H strain. The protein was purified using Co(2+) metal affinity resin. The growth-stimulatory effects of hnTf-VEGF on human umbilical vascular endothelial cells (HUVECs) and its binding to porcine aortic endothelial cells (PAECs) transfected with VEGF receptors were evaluated. hnTf-VEGF protein was labeled with (111)InCl(3) in 10 mmol/L HEPES/15 mmol/L NaHCO(3) buffer, pH 7.4 (HEPES is N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid). The loss of (111)In in vitro from (111)In-hnTf-VEGF to transferrin in human plasma and to diethylenetriaminepentaacetic acid (DTPA) in buffer was determined. Tumor and normal tissue distributions of (111)In-hnTf-VEGF were evaluated in athymic mice implanted subcutaneously with U87MG human glioblastoma xenografts. Tumor imaging was performed. RESULTS: Sodium dodecylsulfate-polyacrylamine gel electrophoresis under reducing and nonreducing conditions showed bands for hnTf-VEGF monomer (M(r) of 65 kDa) and dimer (M(r) of 130 kDa). hnTf-VEGF stimulated the growth of HUVECs 3-fold and demonstrated binding to PAECs displaced by a 50-fold excess of VEGF(165) but not by apotransferrin. There was 21.3% +/- 3.4% loss of (111)In per day from (111)In-hnTf-VEGF to transferrin in plasma, but <5% loss to DTPA over 4 h. (111)In-hnTf-VEGF accumulated in U87MG tumors (6.7% injected dose per gram at 72 h after injection) and its tumor uptake decreased 15-fold by coadministration of a 100-fold excess of VEGF but not by apotransferrin. The tumor-to-blood ratio was 4.9:1 at 72 h after injection and tumors were imaged at 24-72 h after injection. CONCLUSION: (111)In-hnTf-VEGF is a promising radiopharmaceutical for imaging tumor angiogenesis and represents a prototypic protein harboring the metal-binding site of transferrin for labeling with (111)In without introducing DTPA metal chelators.


Asunto(s)
Glioblastoma/diagnóstico por imagen , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/metabolismo , Transferrina/farmacocinética , Factor A de Crecimiento Endotelial Vascular/farmacocinética , Animales , Sitios de Unión , Línea Celular Tumoral , Femenino , Glioblastoma/irrigación sanguínea , Glioblastoma/metabolismo , Humanos , Radioisótopos de Indio/química , Radioisótopos de Indio/farmacocinética , Tasa de Depuración Metabólica , Ratones , Ratones Desnudos , Especificidad de Órganos , Unión Proteica , Cintigrafía , Radiofármacos/farmacocinética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética , Distribución Tisular , Transferrina/química , Transferrina/genética , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA