Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Bioinformatics ; 39(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897014

RESUMEN

SUMMARY: The systems biology graphical notation (SBGN) has become the de facto standard for the graphical representation of molecular maps. Having rapid and easy access to the content of large collections of maps is necessary to perform semantic or graph-based analysis of these resources. To this end, we propose StonPy, a new tool to store and query SBGN maps in a Neo4j graph database. StonPy notably includes a data model that takes into account all three SBGN languages and a completion module to automatically build valid SBGN maps from query results. StonPy is built as a library that can be integrated into other software and offers a command-line interface that allows users to easily perform all operations. AVAILABILITY AND IMPLEMENTATION: StonPy is implemented in Python 3 under a GPLv3 license. Its code and complete documentation are freely available from https://github.com/adrienrougny/stonpy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Biología de Sistemas , Biología de Sistemas/métodos , Bases de Datos Factuales , Lenguaje , Documentación
2.
Brief Bioinform ; 21(1): 62-72, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30289443

RESUMEN

The use of signalling pathway hypergraphs represented as process description diagrams is steadily becoming more pervasive in the field of biology. This makes ever more evident the necessity for an effective automated layout that can replicate high-quality manually drawn diagrams. The complexity and idiosyncrasies of these diagrams, as well as the specific tasks the end users perform with them, mean that a layout must meet many requirements beyond the simple metrics used in existing automated computational approaches. In this paper we outline these requirements, examine existing ones and describe new ones. We demonstrate state-of-the-art layout techniques enhanced with novel functionalities to meet part of the requirements. For comparatively small signalling pathways our enhanced algorithm provides results close to manually drawn layouts. In addition, we suggest technical approaches that may be suited for fulfilling the identified requirements currently not covered.

3.
Bioinformatics ; 36(8): 2620-2622, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31904823

RESUMEN

MOTIVATION: CellDesigner is a well-established biological map editor used in many large-scale scientific efforts. However, the interoperability between the Systems Biology Graphical Notation (SBGN) Markup Language (SBGN-ML) and the CellDesigner's proprietary Systems Biology Markup Language (SBML) extension formats remains a challenge due to the proprietary extensions used in CellDesigner files. RESULTS: We introduce a library named cd2sbgnml and an associated web service for bidirectional conversion between CellDesigner's proprietary SBML extension and SBGN-ML formats. We discuss the functionality of the cd2sbgnml converter, which was successfully used for the translation of comprehensive large-scale diagrams such as the RECON Human Metabolic network and the complete Atlas of Cancer Signalling Network, from the CellDesigner file format into SBGN-ML. AVAILABILITY AND IMPLEMENTATION: The cd2sbgnml conversion library and the web service were developed in Java, and distributed under the GNU Lesser General Public License v3.0. The sources along with a set of examples are available on GitHub (https://github.com/sbgn/cd2sbgnml and https://github.com/sbgn/cd2sbgnml-webservice, respectively). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Biología de Sistemas , Humanos , Redes y Vías Metabólicas , Transducción de Señal
4.
Bioinformatics ; 33(7): 1096-1098, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27993779

RESUMEN

Summary: The goal of this work is to offer a computational framework for exploring data from the Recon2 human metabolic reconstruction model. Advanced user access features have been developed using the Neo4j graph database technology and this paper describes key features such as efficient management of the network data, examples of the network querying for addressing particular tasks, and how query results are converted back to the Systems Biology Markup Language (SBML) standard format. The Neo4j-based metabolic framework facilitates exploration of highly connected and comprehensive human metabolic data and identification of metabolic subnetworks of interest. A Java-based parser component has been developed to convert query results (available in the JSON format) into SBML and SIF formats in order to facilitate further results exploration, enhancement or network sharing. Availability and Implementation: The Neo4j-based metabolic framework is freely available from: https://diseaseknowledgebase.etriks.org/metabolic/browser/ . The java code files developed for this work are available from the following url: https://github.com/ibalaur/MetabolicFramework . Contact: ibalaur@eisbm.org. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Redes y Vías Metabólicas , Programas Informáticos , Gráficos por Computador , Sistemas de Administración de Bases de Datos , Bases de Datos Factuales , Genoma , Humanos , Redes y Vías Metabólicas/genética , Modelos Biológicos
6.
BMC Bioinformatics ; 17(1): 494, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27919219

RESUMEN

BACKGROUND: When modeling in Systems Biology and Systems Medicine, the data is often extensive, complex and heterogeneous. Graphs are a natural way of representing biological networks. Graph databases enable efficient storage and processing of the encoded biological relationships. They furthermore support queries on the structure of biological networks. RESULTS: We present the Java-based framework STON (SBGN TO Neo4j). STON imports and translates metabolic, signalling and gene regulatory pathways represented in the Systems Biology Graphical Notation into a graph-oriented format compatible with the Neo4j graph database. CONCLUSION: STON exploits the power of graph databases to store and query complex biological pathways. This advances the possibility of: i) identifying subnetworks in a given pathway; ii) linking networks across different levels of granularity to address difficulties related to incomplete knowledge representation at single level; and iii) identifying common patterns between pathways in the database.


Asunto(s)
Redes Reguladoras de Genes , Redes y Vías Metabólicas , Transducción de Señal , Programas Informáticos , Biología de Sistemas/métodos , Bases de Datos Factuales , Humanos
8.
Methods Mol Biol ; 2684: 59-99, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37410228

RESUMEN

Delivering better care for patients with bladder cancer (BC) necessitates the development of novel therapeutic strategies that address both the high disease heterogeneity and the limitations of the current therapeutic modalities, such as drug low efficacy and patient resistance acquisition. Drug repurposing is a cost-effective strategy that targets the reuse of existing drugs for new therapeutic purposes. Such a strategy could open new avenues toward more effective BC treatment. BC patients' multi-omics signatures can be used to guide the investigation of existing drugs that show an effective therapeutic potential through drug repurposing. In this book chapter, we present an integrated multilayer approach that includes cross-omics analyses from publicly available transcriptomics and proteomics data derived from BC tissues and cell lines that were investigated for the development of disease-specific signatures. These signatures are subsequently used as input for a signature-based repurposing approach using the Connectivity Map (CMap) tool. We further explain the steps that may be followed to identify and select existing drugs of increased potential for repurposing in BC patients.


Asunto(s)
Reposicionamiento de Medicamentos , Neoplasias de la Vejiga Urinaria , Humanos , Perfilación de la Expresión Génica , Proteómica , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética
9.
Front Bioinform ; 3: 1197310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426048

RESUMEN

As a conceptual model of disease mechanisms, a disease map integrates available knowledge and is applied for data interpretation, predictions and hypothesis generation. It is possible to model disease mechanisms on different levels of granularity and adjust the approach to the goals of a particular project. This rich environment together with requirements for high-quality network reconstruction makes it challenging for new curators and groups to be quickly introduced to the development methods. In this review, we offer a step-by-step guide for developing a disease map within its mainstream pipeline that involves using the CellDesigner tool for creating and editing diagrams and the MINERVA Platform for online visualisation and exploration. We also describe how the Neo4j graph database environment can be used for managing and querying efficiently such a resource. For assessing the interoperability and reproducibility we apply FAIR principles.

10.
Front Immunol ; 14: 1282859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38414974

RESUMEN

Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results: Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion: The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Reposicionamiento de Medicamentos , Biología de Sistemas , Simulación por Computador
11.
J Integr Bioinform ; 19(4)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563404

RESUMEN

Systems biology researchers need feasible solutions for editing and visualisation of large biological diagrams. Here, we present the ySBGN bidirectional converter that translates metabolic pathways, developed in the general-purpose yEd Graph Editor (using the GraphML format) into the Systems Biology Graphical Notation Markup Language (SBGN-ML) standard format and vice versa. We illustrate the functionality of this converter by applying it to the translation of the ReconMap resource (available in the SBGN-ML format) to the yEd-specific GraphML and back. The ySBGN tool makes possible to draw extensive metabolic diagrams in a powerful general-purpose graph editor while providing results in the standard SBGN format.


Asunto(s)
Gráficos por Computador , Programas Informáticos , Redes y Vías Metabólicas , Biología de Sistemas/métodos , Modelos Biológicos
12.
Sci Rep ; 11(1): 22223, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782688

RESUMEN

Cystic fibrosis (CF) is a life-threatening autosomal recessive disease caused by more than 2100 mutations in the CF transmembrane conductance regulator (CFTR) gene, generating variability in disease severity among individuals with CF sharing the same CFTR genotype. Systems biology can assist in the collection and visualization of CF data to extract additional biological significance and find novel therapeutic targets. Here, we present the CyFi-MAP-a disease map repository of CFTR molecular mechanisms and pathways involved in CF. Specifically, we represented the wild-type (wt-CFTR) and the F508del associated processes (F508del-CFTR) in separate submaps, with pathways related to protein biosynthesis, endoplasmic reticulum retention, export, activation/inactivation of channel function, and recycling/degradation after endocytosis. CyFi-MAP is an open-access resource with specific, curated and continuously updated information on CFTR-related pathways available online at https://cysticfibrosismap.github.io/ . This tool was developed as a reference CF pathway data repository to be continuously updated and used worldwide in CF research.


Asunto(s)
Biomarcadores , Fibrosis Quística/etiología , Fibrosis Quística/metabolismo , Bases de Datos Genéticas , Susceptibilidad a Enfermedades , Transducción de Señal , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Programas Informáticos , Navegador Web
13.
Nat Rev Urol ; 17(6): 351-362, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32461687

RESUMEN

Prostate Cancer Diagnosis and Treatment Enhancement Through the Power of Big Data in Europe (PIONEER) is a European network of excellence for big data in prostate cancer, consisting of 32 private and public stakeholders from 9 countries across Europe. Launched by the Innovative Medicines Initiative 2 and part of the Big Data for Better Outcomes Programme (BD4BO), the overarching goal of PIONEER is to provide high-quality evidence on prostate cancer management by unlocking the potential of big data. The project has identified critical evidence gaps in prostate cancer care, via a detailed prioritization exercise including all key stakeholders. By standardizing and integrating existing high-quality and multidisciplinary data sources from patients with prostate cancer across different stages of the disease, the resulting big data will be assembled into a single innovative data platform for research. Based on a unique set of methodologies, PIONEER aims to advance the field of prostate cancer care with a particular focus on improving prostate-cancer-related outcomes, health system efficiency by streamlining patient management, and the quality of health and social care delivered to all men with prostate cancer and their families worldwide.


Asunto(s)
Macrodatos , Investigación Biomédica , Neoplasias de la Próstata , Humanos , Masculino
15.
J Integr Bioinform ; 16(2)2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31199769

RESUMEN

The Systems Biology Graphical Notation (SBGN) is an international community effort that aims to standardise the visualisation of pathways and networks for readers with diverse scientific backgrounds as well as to support an efficient and accurate exchange of biological knowledge between disparate research communities, industry, and other players in systems biology. SBGN comprises the three languages Entity Relationship, Activity Flow, and Process Description (PD) to cover biological and biochemical systems at distinct levels of detail. PD is closest to metabolic and regulatory pathways found in biological literature and textbooks. Its well-defined semantics offer a superior precision in expressing biological knowledge. PD represents mechanistic and temporal dependencies of biological interactions and transformations as a graph. Its different types of nodes include entity pools (e.g. metabolites, proteins, genes and complexes) and processes (e.g. reactions, associations and influences). The edges describe relationships between the nodes (e.g. consumption, production, stimulation and inhibition). This document details Level 1 Version 2.0 of the PD specification, including several improvements, in particular: 1) the addition of the equivalence operator, subunit, and annotation glyphs, 2) modification to the usage of submaps, and 3) updates to clarify the use of various glyphs (i.e. multimer, empty set, and state variable).


Asunto(s)
Gráficos por Computador , Modelos Biológicos , Lenguajes de Programación , Transducción de Señal , Biología de Sistemas
16.
NPJ Syst Biol Appl ; 4: 21, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872544

RESUMEN

The development of computational approaches in systems biology has reached a state of maturity that allows their transition to systems medicine. Despite this progress, intuitive visualisation and context-dependent knowledge representation still present a major bottleneck. In this paper, we describe the Disease Maps Project, an effort towards a community-driven computationally readable comprehensive representation of disease mechanisms. We outline the key principles and the framework required for the success of this initiative, including use of best practices, standards and protocols. We apply a modular approach to ensure efficient sharing and reuse of resources for projects dedicated to specific diseases. Community-wide use of disease maps will accelerate the conduct of biomedical research and lead to new disease ontologies defined from mechanism-based disease endotypes rather than phenotypes.

17.
BMC Syst Biol ; 12(1): 60, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843806

RESUMEN

BACKGROUND: Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS: The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS: We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS: This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.


Asunto(s)
Enfermedad/genética , Biología de Sistemas/métodos , Biomarcadores/metabolismo , Análisis por Conglomerados , Reacciones Falso Positivas , Aprendizaje Automático , Control de Calidad
18.
J Comput Biol ; 24(10): 969-980, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27627442

RESUMEN

The development of colorectal cancer (CRC)-the third most common cancer type-has been associated with deregulations of cellular mechanisms stimulated by both genetic and epigenetic events. StatEpigen is a manually curated and annotated database, containing information on interdependencies between genetic and epigenetic signals, and specialized currently for CRC research. Although StatEpigen provides a well-developed graphical user interface for information retrieval, advanced queries involving associations between multiple concepts can benefit from more detailed graph representation of the integrated data. This can be achieved by using a graph database (NoSQL) approach. Data were extracted from StatEpigen and imported to our newly developed EpiGeNet, a graph database for storage and querying of conditional relationships between molecular (genetic and epigenetic) events observed at different stages of colorectal oncogenesis. We illustrate the enhanced capability of EpiGeNet for exploration of different queries related to colorectal tumor progression; specifically, we demonstrate the query process for (i) stage-specific molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events. The EpiGeNet framework offers improved capability for management and visualization of data on molecular events specific to CRC initiation and progression.


Asunto(s)
Neoplasias Colorrectales/genética , Biología Computacional/métodos , Gráficos por Computador , Epigénesis Genética , Redes Reguladoras de Genes , Programas Informáticos , Bases de Datos Factuales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA