Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 620(7975): 807-812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612395

RESUMEN

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Objetivos , Clima Tropical , Naciones Unidas , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Mamíferos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/tendencias
4.
Nat Mater ; 22(1): 73-83, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456873

RESUMEN

Achieving the long-term stability of perovskite solar cells is arguably the most important challenge required to enable widespread commercialization. Understanding the perovskite crystallization process and its direct impact on device stability is critical to achieving this goal. The commonly employed dimethyl-formamide/dimethyl-sulfoxide solvent preparation method results in a poor crystal quality and microstructure of the polycrystalline perovskite films. In this work, we introduce a high-temperature dimethyl-sulfoxide-free processing method that utilizes dimethylammonium chloride as an additive to control the perovskite intermediate precursor phases. By controlling the crystallization sequence, we tune the grain size, texturing, orientation (corner-up versus face-up) and crystallinity of the formamidinium (FA)/caesium (FA)yCs1-yPb(IxBr1-x)3 perovskite system. A population of encapsulated devices showed improved operational stability, with a median T80 lifetime (the time over which the device power conversion efficiency decreases to 80% of its initial value) for the steady-state power conversion efficiency of 1,190 hours, and a champion device showed a T80 of 1,410 hours, under simulated sunlight at 65 °C in air, under open-circuit conditions. This work highlights the importance of material quality in achieving the long-term operational stability of perovskite optoelectronic devices.


Asunto(s)
Amidinas , Luz Solar , Cationes , Dimetilsulfóxido
5.
Magn Reson Med ; 89(6): 2217-2226, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744585

RESUMEN

PURPOSE: Imaging of the different resonances of hyperpolarized 129 Xe in the brain and lungs was performed using a 3D sampling density-weighted MRSI technique in healthy volunteers. METHODS: Four volunteers underwent dissolved-phase hyperpolarized 129 Xe imaging in the lung with the MRSI technique, which was designed to improve the point-spread function while preserving SNR (1799 phase-encoding steps, 14-s breath hold, 2.1-cm isotropic resolution). A frequency-tailored RF excitation pulse was implemented to reliably excite both the 129 Xe gas and dissolved phase (tissue/blood signal) with 0.1° and 10° flip angles, respectively. Images of xenon gas in the lung airspaces and xenon dissolved in lung tissue/blood were used to generate quantitative signal ratio maps. The method was also optimized and used for imaging dissolved resonances of 129 Xe in the brain in 2 additional volunteers. RESULTS: High-quality regional spectra of hyperpolarized 129 Xe were achieved in both the lung and the brain. Ratio maps of the different xenon resonances were obtained in the lung with sufficient SNR (> 10) at both 1.5 T and 3 T, making a triple Lorentzian fit possible and enabling the measurement of relaxation times and xenon frequency shifts on a voxel-wise basis. The imaging technique was successfully adapted for brain imaging, resulting in the first demonstration of 3D xenon brain images with a 2-cm isotropic resolution. CONCLUSION: Density-weighted MRSI is an SNR and encoding-efficient way to image 129 Xe resonances in the lung and the brain, providing a valuable tool to quantify regional spectroscopic information.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Xenón , Humanos , Isótopos de Xenón/química , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Xenón , Imagenología Tridimensional/métodos
6.
J Synchrotron Radiat ; 29(Pt 4): 1043-1053, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787572

RESUMEN

Three-dimensional X-ray diffraction (3DXRD) is shown to be feasible at the I12 Joint Engineering, Environmental and Processing (JEEP) beamline of Diamond Light Source. As a demonstration, a microstructually simple low-carbon ferritic steel was studied in a highly textured and annealed state. A processing pipeline suited to this beamline was created, using software already established in the 3DXRD user community, enabling grain centre-of-mass positions, orientations and strain tensor elements to be determined. Orientations, with texture measurements independently validated from electron backscatter diffraction (EBSD) data, possessed a ∼0.1° uncertainty, comparable with other 3DXRD instruments. The spatial resolution was limited by the far-field detector pixel size; the average of the grain centre of mass position errors was determined as ±âˆ¼80 µm. An average per-grain error of ∼1 × 10-3 for the elastic strains was also measured; this could be reduced in future experiments by improving sample preparation, geometry calibration, data collection and analysis techniques. Application of 3DXRD onto I12 shows great potential, where its implementation is highly desirable due to the flexible, open architecture of the beamline. User-owned or designed sample environments can be used, thus 3DXRD could be applied to previously unexplored scientific areas.

7.
Molecules ; 28(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615208

RESUMEN

Accurate knowledge of the rubidium (Rb) vapor density, [Rb], is necessary to correctly model the spin dynamics of 129Xe-Rb spin-exchange optical pumping (SEOP). Here we present a systematic evaluation of [Rb] within a high-throughput 129Xe-Rb hyperpolarizer during continuous-flow SEOP. Near-infrared (52S1/2→52P1/2 (D1)/52P3/2 (D2)) and violet (52S1/2→62P1/2/62P3/2) atomic absorption spectroscopy was used to measure [Rb] within 3.5 L cylindrical SEOP cells containing different spatial distributions and amounts of Rb metal. We were able to quantify deviation from the Beer-Lambert law at high optical depth for D2 and 62P3/2 absorption by comparison with measurements of the D1 and 62P1/2 absorption lines, respectively. D2 absorption deviates from the Beer-Lambert law at [Rb]D2>4×1017 m−3 whilst 52S1/2→62P3/2 absorption deviates from the Beer-Lambert law at [Rb]6P3/2>(4.16±0.01)×1019 m−3. The measured [Rb] was used to estimate a 129Xe-Rb spin exchange cross section of γ'=(1.2±0.1)×10−21 m3 s−1, consistent with spin-exchange cross sections from the literature. Significant [Rb] heterogeneity was observed in a SEOP cell containing 1 g of Rb localized at the back of the cell. While [Rb] homogeneity was improved for a greater surface area of the Rb source distribution in the cell, or by using a Rb presaturator, the measured [Rb] was consistently lower than that predicted by saturation Rb vapor density curves. Efforts to optimize [Rb] and thermal management within spin polarizer systems are necessary to maximize potential future enhancements of this technology.


Asunto(s)
Rubidio , Isótopos de Xenón , Isótopos de Xenón/química , Espectroscopía de Resonancia Magnética/métodos , Rubidio/química , Temperatura
8.
Conserv Biol ; 2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32390229

RESUMEN

In pursuit of socioeconomic development, many countries are expanding oil and mineral extraction into tropical forests. These activities seed access to remote, biologically rich areas, thereby endangering global biodiversity. Here we demonstrate that conservation solutions that effectively balance the protection of biodiversity and economic revenues are possible in biologically valuable regions. Using spatial data on oil profits and predicted species and ecosystem extents, we optimise the protection of 741 terrestrial species and 20 ecosystems of the Ecuadorian Amazon, across a range of opportunity costs (i.e. sacrifices of extractive profit). For such an optimisation, giving up 5% of a year's oil profits (US$ 221 million) allows for a protected area network that retains of an average of 65% of the extent of each species/ecosystem. This performance far exceeds that of the network produced by simple land area optimisation which requires a sacrifice of approximately 40% of annual oil profits (US$ 1.7 billion), and uses only marginally less land, to achieve equivalent levels of ecological protection. Applying spatial statistics to remotely sensed, historic deforestation data, we further focus the optimisation to areas most threatened by imminent forest loss. We identify Emergency Conservation Targets: areas that are essential to a cost-effective conservation reserve network and at imminent risk of destruction, thus requiring urgent and effective protection. Governments should employ the methods presented here when considering extractive led development options, to responsibly manage the associated ecological-economic trade-offs and protect natural capital. Article Impact Statement: Governments controlling resource extraction from tropical forests can arrange production and conservation to retain biodiversity and profits. This article is protected by copyright. All rights reserved.

9.
Am J Physiol Endocrinol Metab ; 317(3): E548-E558, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31310581

RESUMEN

Endothelin-1 (ET-1) is a potent vasoconstrictor and proinflammatory peptide that is upregulated in obesity. Herein, we tested the hypothesis that ET-1 signaling promotes visceral adipose tissue (AT) inflammation and disrupts glucose homeostasis. We also tested if reduced ET-1 is a required mechanism by which exercise ameliorates AT inflammation and improves glycemic control in obesity. We found that 1) diet-induced obesity, AT inflammation, and glycemic dysregulation were not accompanied by significantly increased levels of ET-1 in AT or circulation in wild-type mice and that endothelial overexpression of ET-1 and consequently increased ET-1 levels did not cause AT inflammation yet impaired glucose tolerance; 2) reduced AT inflammation and improved glucose tolerance with voluntary wheel running was not associated with decreased levels of ET-1 in AT or circulation in obese mice nor did endothelial overexpression of ET-1 impede such exercise-induced metabolic adaptations; 3) chronic pharmacological blockade of ET-1 receptors did not suppress AT inflammation in obese mice but improved glucose tolerance; and 4) in a cohort of human subjects with a wide range of body mass indexes, ET-1 levels in AT, or circulation were not correlated with markers of inflammation in AT. In aggregate, we conclude that ET-1 signaling is not implicated in the development of visceral AT inflammation but promotes glucose intolerance, thus representing an important therapeutic target for glycemic dysregulation in conditions characterized by hyperendothelinemia. Furthermore, we show that the salutary effects of exercise on AT and systemic metabolic function are not contingent on the suppression of ET-1 signaling.


Asunto(s)
Endotelina-1/metabolismo , Intolerancia a la Glucosa/metabolismo , Inflamación/patología , Grasa Intraabdominal/patología , Condicionamiento Físico Animal/fisiología , Animales , Índice de Masa Corporal , Endotelina-1/antagonistas & inhibidores , Endotelina-1/genética , Ejercicio Físico/fisiología , Femenino , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/patología , Carrera
10.
Am J Physiol Regul Integr Comp Physiol ; 314(4): R584-R597, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351429

RESUMEN

Brown adipose tissue (BAT) is considered protective against obesity and related cardiometabolic dysfunction. Indeed, activation of BAT improves glucose homeostasis and attenuates cardiovascular disease development. However, whether a reduction in BAT mass perturbs metabolic function and increases risk for cardiovascular disease remains largely unknown. To address this question, C57BL/6J male mice underwent a sham procedure or surgical bilateral excision of interscapular BAT (iBATx) and were fed a normal chow or a Western diet for 18 wk, creating four groups ( n = 10/group). Mice were housed at 25°C. As expected, the Western diet increased final body weight and adiposity; however, contrary to our hypothesis, iBATx did not potentiate adiposity independent of diet. Furthermore, iBATx did not affect indexes of glycemic control (HbA1c, fasting glucose and insulin, and glucose area under the curve during a glucose tolerance test) and produced minimal-to-no effects on lipid homeostasis. The absence of metabolic disturbances with iBATx was not attributed to regrowth of iBAT or a "browning" or proliferative compensatory response of other BAT depots. Notably, iBATx caused an increase in aortic stiffness in normal chow-fed mice only, which was associated with an increase in aortic uncoupling protein-1. Collectively, we demonstrated that, at 25°C (i.e., limited thermal stress conditions), a substantial reduction in BAT mass via iBATx does not disrupt systemic glucose metabolism, challenging the current dogma that preservation of BAT is obligatory for optimal metabolic function. However, iBATx caused aortic stiffening in lean mice, hence supporting the existence of an interplay between iBAT and aortic stiffness, independent of alterations in glucose homeostasis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/fisiopatología , Glucemia/metabolismo , Metabolismo Energético , Rigidez Vascular , Tejido Adiposo Pardo/cirugía , Adiposidad , Animales , Enfermedades de la Aorta/sangre , Enfermedades de la Aorta/etiología , Dieta Occidental , Modelos Animales de Enfermedad , Hemoglobina Glucada/metabolismo , Humanos , Insulina/sangre , Lipectomía , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/etiología , Obesidad/fisiopatología , Escápula
11.
Am J Physiol Endocrinol Metab ; 313(4): E402-E412, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28655717

RESUMEN

Females are typically more insulin sensitive than males, which may be partly attributed to greater brown adipose tissue (BAT) activity and uncoupling protein 1 (UCP1) content. Accordingly, we tested the hypothesis that UCP1 deletion would abolish sex differences in insulin sensitivity and that whitening of thoracic periaortic BAT caused by UCP1 loss would be accompanied with impaired thoracic aortic function. Furthermore, because UCP1 exerts antioxidant effects, we examined whether UCP1 deficiency-induced metabolic dysfunction was mediated by oxidative stress. Compared with males, female mice had lower HOMA- and AT-insulin resistance (IR) despite no significant differences in BAT UCP1 content. UCP1 ablation increased HOMA-IR, AT-IR, and whitening of BAT in both sexes. Expression of UCP1 in thoracic aorta was greater in wild-type females compared with males. Importantly, deletion of UCP1 enhanced aortic vasomotor function in females only. UCP1 ablation did not promote oxidative stress in interscapular BAT. Furthermore, daily administration of the free radical scavenger tempol for 8 wk did not abrogate UCP1 deficiency-induced increases in adiposity, hyperinsulinemia, or liver steatosis. Collectively, we report that 1) in normal chow-fed mice housed at 25°C, aortic UCP1 content was greater in females than males and its deletion improved ex vivo aortic vasomotor function in females only; 2) constitutive UCP1 content in BAT was similar between females and males and loss of UCP1 did not abolish sex differences in insulin sensitivity; and 3) the metabolic disruptions caused by UCP1 ablation did not appear to be contingent upon increased oxidative stress in mice under normal dietary conditions.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Aorta/metabolismo , Resistencia a la Insulina/genética , Estrés Oxidativo/genética , Proteína Desacopladora 1/genética , Sistema Vasomotor/metabolismo , Adiposidad/genética , Animales , Aorta/fisiopatología , Hígado Graso/genética , Hígado Graso/metabolismo , Femenino , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Factores Sexuales , Sistema Vasomotor/fisiopatología
12.
J Community Health ; 42(4): 739-747, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28144769

RESUMEN

Parents with limited English proficiency might rely on their adolescent children to interpret health information. We call this adolescent healthcare brokering. Using a mixed-methods, transformative research approach rooted in grounded theory, we sought to answer these questions: (a) "What is happening? What are people doing?" and (b) "What do these stories indicate? What might they suggest about social justice?" High school students from a community in which 53.4% speak another language at home were invited to participate in a survey and focus groups. Of 238 survey participants, 57.5% (n = 137) indicated they assisted with healthcare tasks. When doing so, 81.7% (n = 112) translated. Common tasks were reading prescriptions and talking to doctors. While some participants cited negative emotions associated with brokering, the net emotion was positive. Focus groups (n = 11) revealed that tasks varied broadly in complexity and type, emotional experiences were dichotomous, and access to interpreting services and other supports was inconsistent. This research adopts an advocacy lens and uses a mixed-methods, transformative research approach rooted in grounded theory to describe and call attention to a social justice phenomenon we call adolescent healthcare brokering. We define adolescent healthcare brokering as young people acting as linguistic interpreters in healthcare situations for themselves and for family members with limited English proficiency (LEP). In such situations, language acts as a barrier to health literacy and access to healthcare [17]. Despite this known barrier, there is a gap in the research regarding how to successfully address this situation (McKee, Paasche-Orlow, Journal of health communication 17(3):7-12, 2012).


Asunto(s)
Barreras de Comunicación , Atención a la Salud/métodos , Lenguaje , Núcleo Familiar/etnología , Traducción , Adolescente , Emigrantes e Inmigrantes , Emociones , Relaciones Familiares , Femenino , Alfabetización en Salud , Humanos , Entrevistas como Asunto , Masculino , Factores Socioeconómicos
13.
J Am Chem Soc ; 137(49): 15451-9, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26579724

RESUMEN

Despite rapid developments in both photovoltaic and light-emitting device performance, the understanding of the optoelectronic properties of hybrid lead halide perovskites is still incomplete. In particular, the polarizability of the material, the presence of molecular dipoles, and their influence on the dynamics of the photoexcitations remain an open issue to be clarified. Here, we investigate the effect of an applied external electric field on the photoexcited species of CH3NH3PbI3 thin films, both at room temperature and at low temperature, by monitoring the photoluminescence (PL) yield and PL decays. At room temperature we find evidence for electric-field-induced reduction of radiative bimolecular carrier recombination together with motion of charged defects that affects the nonradiative decay rate of the photoexcited species. At low temperature (190 K), we observe a field-induced enhancement of radiative free carrier recombination rates that lasts even after the removal of the field. We assign this to field-induced alignment of the molecular dipoles, which reduces the vibrational freedom of the lattice and the associated local screening and hence results in a stronger electron-hole interaction.

14.
Nano Lett ; 14(2): 724-30, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24341922

RESUMEN

The highest efficiencies in solution-processable perovskite-based solar cells have been achieved using an electron collection layer that requires sintering at 500 °C. This is unfavorable for low-cost production, applications on plastic substrates, and multijunction device architectures. Here we report a low-cost, solution-based deposition procedure utilizing nanocomposites of graphene and TiO2 nanoparticles as the electron collection layers in meso-superstructured perovskite solar cells. The graphene nanoflakes provide superior charge-collection in the nanocomposites, enabling the entire device to be fabricated at temperatures no higher than 150 °C. These solar cells show remarkable photovoltaic performance with a power conversion efficiency up to 15.6%. This work demonstrates that graphene/metal oxide nanocomposites have the potential to contribute significantly toward the development of low-cost solar cells.

15.
Biol Blood Marrow Transplant ; 20(4): 581-6, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24370862

RESUMEN

Allogeneic hematopoietic stem cell transplantation for patients with a hemoglobinopathy can be curative but is limited by donor availability. Although positive results are frequently observed in those with an HLA-matched sibling donor, use of unrelated donors has been complicated by poor engraftment, excessive regimen-related toxicity, and graft-versus-host disease (GVHD). As a potential strategy to address these obstacles, a pilot study was designed that incorporated both a reduced-intensity conditioning and mesenchymal stromal cells (MSCs). Six patients were enrolled, including 4 with high-risk sickle cell disease (SCD) and 2 with transfusion-dependent thalassemia major. Conditioning consisted of fludarabine (150 mg/m(2)), melphalan (140 mg/m(2)), and alemtuzumab (60 mg for patients weighing > 30 kg and .9 mg/kg for patients weighing <30 kg). Two patients received HLA 7/8 allele matched bone marrow and 4 received 4-5/6 HLA matched umbilical cord blood as the source of HSCs. MSCs were of bone marrow origin and derived from a parent in 1 patient and from an unrelated third-party donor in the remaining 5 patients. GVHD prophylaxis consisted of cyclosporine A and mycophenolate mofetil. One patient had neutropenic graft failure, 2 had autologous hematopoietic recovery, and 3 had hematopoietic recovery with complete chimerism. The 2 SCD patients with autologous hematopoietic recovery are alive. The remaining 4 died either from opportunistic infection, GVHD, or intracranial hemorrhage. Although no infusion-related toxicity was seen, the cotransplantation of MSCs was not sufficient for reliable engraftment in patients with advanced hemoglobinopathy. Although poor engraftment has been observed in nearly all such trials to date in this patient population, there was no evidence to suggest that MSCs had any positive impact on engraftment. Because of the lack of improved engraftment and unacceptably high transplant-related mortality, the study was prematurely terminated. Further investigations into understanding the mechanisms of graft resistance and development of strategies to overcome this barrier are needed to move this field forward.


Asunto(s)
Anemia de Células Falciformes/terapia , Trasplante de Células Madre de Sangre del Cordón Umbilical , Trasplante de Células Madre Mesenquimatosas , Agonistas Mieloablativos/uso terapéutico , Acondicionamiento Pretrasplante/métodos , Talasemia beta/terapia , Adolescente , Alemtuzumab , Anemia de Células Falciformes/inmunología , Anemia de Células Falciformes/mortalidad , Anemia de Células Falciformes/patología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Niño , Femenino , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/mortalidad , Enfermedad Injerto contra Huésped/patología , Enfermedad Injerto contra Huésped/prevención & control , Antígenos HLA/inmunología , Prueba de Histocompatibilidad , Humanos , Masculino , Melfalán/uso terapéutico , Análisis de Supervivencia , Trasplante Homólogo , Insuficiencia del Tratamiento , Donante no Emparentado , Vidarabina/análogos & derivados , Vidarabina/uso terapéutico , Talasemia beta/inmunología , Talasemia beta/mortalidad , Talasemia beta/patología
16.
Matrix Biol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38944161

RESUMEN

Heparan sulfate (HS) is an important component of the kidney anionic filtration barrier, the glomerular basement membrane (GBM). HS chains attached to proteoglycan protein cores are modified by sulfotransferases in a highly ordered series of biosynthetic steps resulting in immense structural diversity due to negatively charged sulfate modifications. 3-O-sulfation is the least abundant modification generated by a family of seven isoforms but creates the most highly sulfated HS domains. We analyzed the kidney phenotypes in the Hs3st3a1, Hs3st3b1 and Hs3st6 -knockout (KO) mice, the isoforms enriched in kidney podocytes. Individual KO mice show no overt kidney phenotype, although Hs3st3b1 kidneys were smaller than wildtype (WT). Furthermore, Hs3st3a1-/-; Hs3st3b1-/- double knockout (DKO) kidneys were smaller but also had a reduction in glomerular size relative to wildtype (WT). Mass spectrometry analysis of kidney HS showed reduced 3-O-sulfation in Hs3st3a1-/- and Hs3st3b1-/-, but not in Hs3st6-/- kidneys. Glomerular HS showed reduced HS staining and reduced ligand-and-carbohydrate engagement (LACE) assay, a tool that detects changes in binding of growth factor receptor-ligand complexes to HS. Interestingly, DKO mice have increased levels of blood urea nitrogen, although no differences were detected in urinary levels of albumin, creatinine and nephrin. Finally, transmission electron microscopy showed irregular and thickened GBM and podocyte foot process effacement in the DKO compared to WT. Together, our data suggest that loss of 3-O-HS domains disrupts the kidney glomerular architecture without affecting the glomerular filtration barrier and overall kidney function.

17.
Phys Chem Chem Phys ; 15(7): 2572-9, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23310946

RESUMEN

Lithium salts have been shown to dramatically increase the conductivity in a broad range of polymeric and small molecule organic semiconductors (OSs). Here we demonstrate and identify the mechanism by which Li(+) p-dopes OSs in the presence of oxygen. After we established the lithium doping mechanism, we re-evaluate the role of lithium bis(trifluoromethylsulfonyl)-imide (Li-TFSI) in 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9'-Spirobifluorene (Spiro-OMeTAD) based solid-state dye-sensitized solar cells (ss-DSSCs). The doping mechanism consumes Li(+) during the device operation, which poses a problem, since the lithium salt is required at the dye-sensitized heterojunction to enhance charge generation. This compromise highlights that new additives are required to maximize the performance and the long-term stability of ss-DSSCs.

18.
Environ Sci Pollut Res Int ; 30(10): 27912-27935, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36385346

RESUMEN

This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine learning models, namely group method of data handling (GMDH) and least squares support vector regression (LS-SVR), were used to model the inflow to the dam reservoir. Temperature, precipitation, and inflow during the previous month from 1990 to 2017 were used as input data. In the second part, the evaporation from the dam reservoir was modeled using the adaptive neuro-fuzzy inference system (ANFIS) and optimized ANFIS using Harris hawks optimization (HHO) and the arithmetic optimization algorithm (AOA) optimization algorithms. The input parameters in this part were temperature, precipitation, inflow to the dam reservoir, along with evaporation from the dam reservoir in the previous month. In the third part, precipitation and temperature were predicted using the fifth report of IPCC based on RCP2.6, RCP4.5, and RCP8.5 scenarios for the period 2020-2040. Out of 28 models presented in the fifth report, EC-ERATH and FIO-ESM had the greatest similarity with observational data of temperature and precipitation, respectively. The results of scatter plots and Taylor's diagram showed the higher performance of LS-SVR (root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash-Sutcliffe efficiency (NSE) of 8.65, 4.69, and 0.96) compared to GMDH (RMSE, MAPE, and NSE of 11.65, 7.81, and 0.93) in modeling the inflow. Moreover, both hybrid modes (AOA-ANFIS and HHO-ANFIS) improved the performance of ANFIS in modeling the evaporation from the dam reservoir. The RMSE, MAPE, and NSE values for ANFIS were 0.56, 0.52, and 0.89, respectively, while these values for the AOA-ANFIS (RMSE, MAPE, and NSE of 0.31, 0.24, and 0.93) and HHO-ANFIS (RMSE, MAPE, and NSE of 0.20, 0.30, and 0.96) were improved remarkably. The impact of climate change reduced the inflow to the dam reservoir by about 0.45, 0.80, and 1.7 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, the effect of climate change caused the evaporation from the dam reservoir to increase by about 0.2, 0.9, and 1 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The findings of this study show that the correct management of dam reservoirs needs to consider the potential effects of climate change in the future. Moreover, the hybrid machine learning models used in this study can be used to predict the amount of evaporation in other reservoirs.


Asunto(s)
Inteligencia Artificial , Lógica Difusa , Cambio Climático , Algoritmos , Aprendizaje Automático
19.
ACS Appl Mater Interfaces ; 15(1): 772-781, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36563084

RESUMEN

Vacuum deposition is a solvent-free method suitable for growing thin films of metal halide perovskite (MHP) semiconductors. However, most reports of high-efficiency solar cells based on such vacuum-deposited MHP films incorporate solution-processed hole transport layers (HTLs), thereby complicating prospects of industrial upscaling and potentially affecting the overall device stability. In this work, we investigate organometallic copper phthalocyanine (CuPc) and zinc phthalocyanine (ZnPc) as alternative, low-cost, and durable HTLs in all-vacuum-deposited solvent-free formamidinium-cesium lead triodide [CH(NH2)2]0.83Cs0.17PbI3 (FACsPbI3) perovskite solar cells. We elucidate that the CuPc HTL, when employed in an "inverted" p-i-n solar cell configuration, attains a solar-to-electrical power conversion efficiency of up to 13.9%. Importantly, unencapsulated devices as large as 1 cm2 exhibited excellent long-term stability, demonstrating no observable degradation in efficiency after more than 5000 h in storage and 3700 h under 85 °C thermal stressing in N2 atmosphere.

20.
Nat Commun ; 14(1): 932, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36805448

RESUMEN

In this work, we couple theoretical and experimental approaches to understand and reduce the losses of wide bandgap Br-rich perovskite pin devices at open-circuit voltage (VOC) and short-circuit current (JSC) conditions. A mismatch between the internal quasi-Fermi level splitting (QFLS) and the external VOC is detrimental for these devices. We demonstrate that modifying the perovskite top-surface with guanidinium-Br and imidazolium-Br forms a low-dimensional perovskite phase at the n-interface, suppressing the QFLS-VOC mismatch, and boosting the VOC. Concurrently, the use of an ionic interlayer or a self-assembled monolayer at the p-interface reduces the inferred field screening induced by mobile ions at JSC, promoting charge extraction and raising the JSC. The combination of the n- and p-type optimizations allows us to approach the thermodynamic potential of the perovskite absorber layer, resulting in 1 cm2 devices with performance parameters of VOCs up to 1.29 V, fill factors above 80% and JSCs up to 17 mA/cm2, in addition to a thermal stability T80 lifetime of more than 3500 h at 85 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA