Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Transplant ; 20(7): 1902-1906, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32324331

RESUMEN

Coronavirus disease 2019 (COVID-19) pneumonia has been poorly reported in solid organ transplanted patients; prognosis is uncertain and best management unclear. We describe the case of a 61-year-old kidney transplant recipient with several comorbidities who was hospitalized and later received a diagnosis of COVID-19 pneumonia; the infection was successfully managed with the use of hydroxychloroquine and a single administration of tocilizumab, after immunosuppression reduction; the patient did not require mechanical ventilation. During the rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, transplant clinicians should be readily informed about new cases of COVID-19 pneumonia in solid organ transplant recipients, with focus on therapeutic strategies employed and their outcome.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Infecciones por Coronavirus/terapia , Hidroxicloroquina/administración & dosificación , Inmunosupresores/administración & dosificación , Fallo Renal Crónico/complicaciones , Trasplante de Riñón , Nefritis Intersticial/complicaciones , Neumonía Viral/terapia , Antivirales/administración & dosificación , Betacoronavirus , COVID-19 , Comorbilidad , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/tratamiento farmacológico , Humanos , Fallo Renal Crónico/cirugía , Masculino , Persona de Mediana Edad , Nefritis Intersticial/cirugía , Pandemias , Neumonía Viral/complicaciones , Respiración Artificial , Medición de Riesgo , SARS-CoV-2 , Resultado del Tratamiento , Tratamiento Farmacológico de COVID-19
2.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30463350

RESUMEN

Osteosarcoma therapy might be moving toward nanotechnology-based drug delivery systems to reduce the cytotoxicity of antineoplastic drugs and improve their pharmacokinetics. In this paper, we present, for the first time, an extensive chemical and in vitro characterization of dual-loaded photo- and chemo-active keratin nanoparticles as a novel drug delivery system to treat osteosarcoma. The nanoparticles are prepared from high molecular weight and hydrosoluble keratin, suitably functionalized with the photosensitizer Chlorin-e6 (Ce6) and then loaded with the chemotherapeutic drug Paclitaxel (PTX). This multi-modal PTX-Ce6@Ker nanoformulation is prepared by both drug-induced aggregation and desolvation methods, and a comprehensive physicochemical characterization is performed. PTX-Ce6@Ker efficacy is tested on osteosarcoma tumor cell lines, including chemo-resistant cells, using 2D and 3D model systems. The single and combined contributions of PTX and Ce6 is evaluated, and results show that PTX retains its activity while being vehiculated through keratin. Moreover, PTX and Ce6 act in an additive manner, demonstrating that the combination of the cytostatic blockage of PTX and the oxidative damage of ROS upon light irradiation have a far superior effect compared to singularly administered PTX or Ce6. Our findings provide the proof of principle for the development of a novel, nanotechnology-based drug delivery system for the treatment of osteosarcoma.


Asunto(s)
Sistemas de Liberación de Medicamentos , Queratinas/química , Nanotecnología , Osteosarcoma/tratamiento farmacológico , Línea Celular Tumoral , Supervivencia Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Nanopartículas/química , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Osteosarcoma/patología , Paclitaxel/farmacología
3.
Nanomedicine ; 12(7): 1885-1897, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27133189

RESUMEN

Conventional photodynamic therapy has shown to be beneficial in the treatment of a variety of tumors. However, one of its major limitations is the inadequate penetration depth of visible light. In order to overcome this constraint, we developed 80nm poly-methylmethacrylate core-shell fluorescent nanoparticles (FNP) loaded with the photosensitizer tetrasulfonated aluminum phthalocyanine (Ptl). To demonstrate the efficacy of our Ptl@FNP we performed in vitro and in vivo studies using a human prostate tumor model. Our data reveal that Ptl@FNP are internalized by tumor cells, favour Ptl intracellular accumulation, and efficiently trigger cell death through the generation of ROS upon irradiation with 680nm light. When directly injected into tumors intramuscularly induced in SCID mice, Ptl@FNP upon irradiation significantly reduce tumor growth with higher efficiency than the bare Ptl. Collectively, these results demonstrate that the newly developed nanoparticles may be utilized as a delivery system for antitumor phototherapy in solid cancers.


Asunto(s)
Indoles/administración & dosificación , Nanopartículas , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Línea Celular Tumoral , Humanos , Isoindoles , Masculino , Ratones , Ratones SCID
4.
Photochem Photobiol Sci ; 12(5): 760-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23348806

RESUMEN

Among the medical applications of nanoparticles, their usage as photosensitizer (PS) carriers for photodynamic therapy (PDT) has attracted increasing attention. In the present study we explored the morphological and photophysical properties of core-shell PMMA nanoparticles (PMMA-NPs) electrostatically post-loaded with the synthetic, water soluble 5,10,15,20-tetrakis(4-sulphonatophenyl)-porphyrin (TPPS4). pH response and singlet oxygen analyses of differently loaded samples proved the high capability of the PMMA-NPs to shield the PS from the environment, while retaining the PS singlet oxygen production capability. Preliminary in vitro imaging and phototoxicity experiments on HepG2 cells demonstrated the efficacy of the system to trigger photoinduced cell death in the culture.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Polimetil Metacrilato/química , Porfirinas/química , Aniones/química , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Microscopía Confocal , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/toxicidad , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Electricidad Estática
5.
Bioorg Med Chem ; 20(22): 6640-7, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23043726

RESUMEN

We report herein the viability of a novel nanoparticles (NPs) conjugated system, namely the attachment, based on ionic and hydrophobic interactions, of different sulfonated organic salts to positively charged poly(methylmethacrylate) (PMMA)-based core-shell nanoparticles (EA0) having an high density of ammonium groups on their shells. In this context three different applications of the sulfonates@EA0 systems have been described. In detail, their ability as cytotoxic drugs and pro-drugs carriers was evaluated in vitro on NCI-H460 cell line and in vivo against human ovarian carcinoma IGROV-1 cells. Besides, 8-hydroxypyrene-1,3,6-trisulfonic acid, trisodium salt (HPTS) was chosen for NPs loading, and its internalization as bioimaging probe was evaluated on Hep G2 cells. Overall, the available data support the interest for these PMMA NPs@sulfonates systems as a promising formulation for theranostic applications. In vivo biological data strongly support the potential value of these core-shell NPs as delivery system for negatively charged drugs or biologically active molecules. Additionally, we have demonstrated the ability of these PMMA core-shell nanoparticles to act as efficient carriers of fluorophores. In principle, thanks to the high PMMA NPs external charge density, sequential and very easy post-loading of different sulfonates is achievable, thus allowing the preparation of nanocarriers either with bi-modal drug delivery behaviour or as theranostic systems.


Asunto(s)
Antineoplásicos/química , Nanopartículas/química , Polimetil Metacrilato/química , Ácidos Sulfónicos/química , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Femenino , Células Hep G2 , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/administración & dosificación , Paclitaxel/química , Profármacos/química , Trasplante Heterólogo
6.
Nanomaterials (Basel) ; 12(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35564115

RESUMEN

In recent years, several studies have focused their attention on the preparation of biocompatible and biodegradable nanocarriers of potential interest in the biomedical field, ranging from drug delivery systems to imaging and diagnosis. In this regard, natural biomolecules-such as proteins-represent an attractive alternative to synthetic polymers or inorganic materials, thanks to their numerous advantages, such as biocompatibility, biodegradability, and low immunogenicity. Among the most interesting proteins, keratin extracted from wool and feathers, as well as fibroin extracted from Bombyx mori cocoons, possess all of the abovementioned features required for biomedical applications. In the present review, we therefore aim to give an overview of the most important and efficient methodologies for obtaining drug-loaded keratin and fibroin nanoparticles, and of their potential for biomedical applications.

7.
Cancers (Basel) ; 15(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36612089

RESUMEN

Several limitations, including dark toxicity, reduced tumor tissue selectivity, low photostability and poor biocompatibility hamper the clinical use of Photodynamic therapy (PDT) in cancer treatment. To overcome these limitations, new PSs have been synthetized, and often combined with drug delivery systems, to improve selectivity and reduce toxicity. In this context, BODIPYs (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) have recently emerged as promising and easy-to-handle scaffolds for the preparation of effective PDT antitumor agents. In this study, the anticancer photodynamic effect of newly prepared negatively charged polymethyl methacrylate (nPMMA)-bounded BODIPYs (3@nPMMA and 6@nPMMA) was evaluated on a panel of 2D- and 3D-cultured cancer cell lines and compared with free BODIPYs. In particular, the effect on cell viability was evaluated, along with their ability to accumulate into the cells, induce apoptotic and/or necrotic cell death, and inhibit cellular migration. Our results indicated that 3@nPMMA and 6@nPMMA reduce cancer cell viability in 3D models of HC116 and MCF7 cells more effectively than the corresponding free compounds. Importantly, we demonstrated that MDA-MB231 and SKOV3 cell migration ability was significantly impaired by the PDT treatment mediated by 3@nPMMA and 6@nPMMA nanoparticles, likely indicating the capability of this approach to reduce metastatic tumor potential.

8.
Pharmaceutics ; 14(3)2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35336051

RESUMEN

Osteosarcoma treatment is moving towards more effective combination therapies. Nevertheless, these approaches present distinctive challenges that can complicate the clinical translation, such as increased toxicity and multi-drug resistance. Drug co-encapsulation within a nanoparticle formulation can overcome these challenges and improve the therapeutic index. We previously synthetized keratin nanoparticles functionalized with Chlorin-e6 (Ce6) and paclitaxel (PTX) to combine photo (PDT) and chemotherapy (PTX) regimens, and the inhibition of osteosarcoma cells growth in vitro was demonstrated. In the current study, we generated an orthotopic osteosarcoma murine model for the preclinical evaluation of our combination therapy. To achieve maximum reproducibility, we systematically established key parameters, such as the number of cells to generate the tumor, the nanoparticles dose, the design of the light-delivery device, the treatment schedule, and the irradiation settings. A 60% engrafting rate was obtained using 10 million OS cells inoculated intratibial, with the tumor model recapitulating the histological hallmarks of the human counterpart. By scheduling the treatment as two cycles of injections, a 32% tumor reduction was obtained with PTX mono-therapy and a 78% reduction with the combined PTX-PDT therapy. Our findings provide the in vivo proof of concept for the subsequent clinical development of a combination therapy to fight osteosarcoma.

9.
Int Urol Nephrol ; 54(2): 405-410, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34115260

RESUMEN

PURPOSE: Acid-base derangement has been poorly described in patients with coronavirus disease 2019 (COVID-19). Considering the high prevalence of pneumonia and kidneys injury in COVID-19, frequent acid-base alterations are expected in patients admitted with SARS-Cov-2 infection. The study aimed to assess the prevalence of acid-base disorders in symptomatic patients with a diagnosis of COVID-19. METHODS: The retrospective study enrolled COVID-19 patients hospitalized at the University Hospital of Modena from 4 March to 20 June 2020. Baseline arterial blood gas (ABG) analysis was collected in 211 patients. In subjects with multiple ABG analysis, we selected only the first measurement. A pH of less than 7.37 was categorized as acidemia and a pH of more than 7.43 was categorized as alkalemia. RESULTS: ABG analyses revealed a low arterial partial pressure of oxygen (PO2, 70.2 ± 25.1 mmHg), oxygen saturation (SO2, 92%) and a mild reduction of PO2/FiO2 ratio (231 ± 129). Acid-base alterations were found in 79.7% of the patient. Metabolic alkalosis (33.6%) was the main alteration followed by respiratory alkalosis (30.3%), combined alkalosis (9.4%), respiratory acidosis (3.3%), metabolic acidosis (2.8%) and other compensated acid-base disturbances (3.6%). All six patients with metabolic acidosis died at the end of the follow-up. CONCLUSION: Variations of pH occurred in the majority (79.7%) of patients admitted with COVID-19. The patients experienced all the type of acid-base disorders, notably metabolic and respiratory alkalosis were the most common alterations in this group of patients.


Asunto(s)
Desequilibrio Ácido-Base/epidemiología , Desequilibrio Ácido-Base/virología , COVID-19/complicaciones , Desequilibrio Ácido-Base/diagnóstico , Anciano , Anciano de 80 o más Años , Análisis de los Gases de la Sangre , COVID-19/metabolismo , COVID-19/mortalidad , Femenino , Hospitalización , Humanos , Italia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Tasa de Supervivencia
10.
Mater Sci Eng C Mater Biol Appl ; 122: 111899, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33641902

RESUMEN

The high rates of aggressiveness, drug resistance and relapse of breast cancer (BC) are mainly attributed to the inability of conventional therapies to equally eradicate bulk differentiated cells and cancer stem cells (CSCs). To improve the effectiveness of BC treatments, we report the in-water synthesis of novel keratin-based nanoformulations, loaded with the CSC-specific drug salinomycin (SAL), the photosensitizer chlorin e6 (Ce6) and vitamin E acetate (SAL/Ce6@kVEs), which combine the capability of releasing SAL with the production of singlet oxygen upon light irradiation. In vitro experiments on BC cell lines and CSC-enriched mammospheres exposed to single or combined therapies showed that SAL/Ce6@kVEs determine synergistic cell killing, limit their self-renewal capacity and decrease the stemness potential by eradication of CSCs. In vivo experiments on zebrafish embryos confirmed the capacity of SAL nanoformulations to interfere with the Wnt/ß-catenin signaling pathway, which is dysregulated in BC, thus identifying a target for further translation into pre-clinical models.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Porfirinas , Animales , Línea Celular Tumoral , Humanos , Queratinas , Piranos , Pez Cebra
11.
Mol Ther ; 17(5): 820-7, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19240694

RESUMEN

For subsets of Duchenne muscular dystrophy (DMD) mutations, antisense oligoribonucleotide (AON)-mediated exon skipping has proven to be efficacious in restoring the expression of dystrophin protein. In the mdx murine model systemic delivery of AON, recognizing the splice donor of dystrophin exon 23, has shown proof of concept. Here, we show that using cationic polymethylmethacrylate (PMMA) (marked as T1) nanoparticles loaded with a low dose of 2'-O-methyl-phosphorothioate (2'OMePS) AON delivered by weekly intraperitoneal (IP) injection (0.9 mg/kg/week), could restore dystrophin expression in body-wide striated muscles. Delivery of an identical dose of naked AON did not result in detectable dystrophin expression. Transcription, western, and immunohistochemical analysis showed increased levels of dystrophin transcript and protein, and correct localization at the sarcolemma. This study shows that T1 nanoparticles have the capacity to bind and convoy AONs in body-wide muscle tissues and to reduce the dose required for dystrophin rescue. By immunofluorescence and electron microscopy studies, we highlighted the diffusion pathways of this compound. This nonviral approach may valuably improve the therapeutic usage of AONs in DMD as well as the delivery of RNA molecules with many implications in both basic research and medicine.


Asunto(s)
Distrofina/metabolismo , Nanopartículas/química , Oligorribonucleótidos Antisentido/fisiología , Polimetil Metacrilato/química , Animales , Western Blotting , Distrofina/genética , Electroforesis en Gel de Poliacrilamida , Exones/genética , Terapia Genética/métodos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Mutantes , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/terapia , Oligorribonucleótidos Antisentido/genética , Oligorribonucleótidos Antisentido/metabolismo , Polimetil Metacrilato/síntesis química
12.
Front Physiol ; 11: 747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676039

RESUMEN

The spreading of Coronavirus (SARS-CoV-2) pandemic, known as COVID-19, has caused a great number of fatalities all around the World. Up to date (2020 May 6) in Italy we had more than 28,000 deaths, while there were more than 205.000 infected. The majority of patients affected by COVID-19 complained only slight symptoms: fatigue, myalgia or cough, but more than 15% of Chinese patients progressed into severe complications, with acute respiratory distress syndrome (ARDS), needing intensive treatment. We tried to summarize data reported in the last months from several Countries, highlighting that COVID-19 was characterized by cytokine storm (CS) and endothelial dysfunction in severely ill patients, where the progression of the disease was fast and fatal. Endothelial dysfunction was the fundamental mechanism triggering a pro-coagulant state, finally evolving into intravascular disseminated coagulation, causing embolization of several organs and consequent multiorgan failure (MOF). The Italian Society of Clinical Hemorheology and Microcirculation was aimed to highlight the role of microcirculatory dysfunction in the pathogenetic mechanisms of COVID-19 during the spreading of the biggest challenges to the World Health.

13.
J Exp Clin Cancer Res ; 39(1): 40, 2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32087737

RESUMEN

BACKGROUND: Osteosarcoma (OS) is an aggressive malignant neoplasm that still suffers from poor prognosis in the case of distal metastases or occurrence of multi-drug resistance. It is therefore crucial to find novel therapeutic options able to go beyond these limitations and improve patients' survival. The objective of this study is to exploit the intrinsic properties of mesenchymal stromal cells (MSCs) to migrate and infiltrate the tumor stroma to specifically deliver therapeutic agents directly to cancer cells. In particular, we aimed to test the efficacy of the photoactivation of MSCs loaded with nanoparticles in vitro and in a murine in vivo ectopic osteosarcoma model. METHODS: AlPcS4@FNPs were produced by adding tetra-sulfonated aluminum phthalocyanine (AlPcS4) to an aqueous solution of positively charged poly-methyl methacrylate core-shell fluorescent nanoparticles (FNPs). The photodynamic therapy (PDT) effect is achieved by activation of the photosensitizer AlPcS4 in the near-infrared light with an LED source. Human MSCs were isolated from the bone marrow of five donors to account for inter-patients variability and used in this study after being evaluated for their clonogenicity, multipotency and immunophenotypic profile. MSC lines were then tested for the ability to internalize and retain the nanoparticles, along with their migratory properties in vitro. Photoactivation effect was evaluated both in a monolayer (2D) co-culture of AlPcS4@FNPs loaded MSCs with human OS cells (SaOS-2) and in tridimensional (3D) multicellular spheroids (AlPcS4@FNPs loaded MSCs with human OS cells, MG-63). Cell death was assessed by AnnexinV/PI and Live&Dead CalceinAM/EthD staining in 2D, while in the 3D co-culture, the cell killing effect was measured through ATP content, CalceinAM/EthD staining and TEM imaging. We also evaluated the effectiveness of AlPcS4@FNPs loaded MSCs as delivery systems and the ability of the photodynamic treatment to kill cancer cells in a subcutaneous mouse model of OS by bioluminescence imaging (BLI) and histology. RESULTS: MSCs internalized AlPcS4@FNPs without losing or altering their motility and viability in vitro. Photoactivation of AlPcS4@FNPs loaded MSCs induced high level of OS cells death in the 2D co-culture. Similarly, in the 3D co-culture (MSCs:OS ratios 1:1 or 1:3), a substantial decrease of both MSCs and OS cells viability was observed. Notably, when increasing the MSCs:OS ratio to 1:7, photoactivation still caused more than 40% cells death. When tested in an in vivo ectopic OS model, AlPcS4@FNPs loaded MSCs were able to decrease OS growth by 68% after two cycles of photoactivation. CONCLUSIONS: Our findings demonstrate that MSCs can deliver functional photosensitizer-decorated nanoparticles in vitro and in vivo and inhibit OS tumor growth. MSCs may be an effective platform for the targeted delivery of therapeutic nanodrugs in a clinical scenario, alone or in combination with other osteosarcoma treatment modalities.


Asunto(s)
Neoplasias Óseas/terapia , Indoles/administración & dosificación , Células Madre Mesenquimatosas/citología , Compuestos Organometálicos/administración & dosificación , Osteosarcoma/terapia , Fármacos Fotosensibilizantes/administración & dosificación , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Humanos , Indoles/farmacología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/química , Ratones , Nanopartículas , Compuestos Organometálicos/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
14.
J Photochem Photobiol B ; 199: 111598, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31465971

RESUMEN

The combination of chemotherapy and photodynamic therapy (PDT) is considered a valuable strategy for increasing therapeutic response in cancer treatment, and the re-formulation of pharmaceuticals in biocompatible nanoparticles (NPs) is particularly appealing for the possibility of co-loading drugs exerting cytotoxicity by different mechanisms, with the aim to produce synergic effects. We report the in-water synthesis of a novel keratin-based nanoformulation for the co-delivery of the antimitotic Docetaxel (DTX) and the photosensitizer Chlorin e6 (Ce6). The drug-induced aggregation method allowed the formation of monodisperse NPs (DTX/Ce6-KNPs) with an average diameter of 133 nm and loaded with a drug ratio of 1:1.8 of Ce6 vs DTX. The efficacy of DTX/Ce6-KNPs was investigated in vitro in monolayers and spheroids of DTX-sensitive HeLa (HeLa-P) and DTX-resistant HeLa (HeLa-R) cells. In monolayers, the cytotoxic effects of DTX/Ce6-KNPs toward HeLa-P cells were comparable to those induced by free DTX + Ce6, while in HeLa-R cells the drug co-loading in KNPs produced synergic interaction between chemotherapy and PDT. Moreover, as respect to monotherapies, DTX/Ce6-KNPs induced stronger cytotoxicity to both HeLa-P and HeLa-R multicellular spheroids and reduced their volumes up to 50%. Overall, the results suggest that KNPs are very promising systems for the co-delivery of chemotherapeutics and PSs, favoring synergic interactions between PDT and chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Docetaxel/farmacología , Portadores de Fármacos/química , Queratinas/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Porfirinas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Materiales Biocompatibles/química , Permeabilidad de la Membrana Celular , Supervivencia Celular/efectos de los fármacos , Clorofilidas , Composición de Medicamentos/métodos , Liberación de Fármacos , Sinergismo Farmacológico , Células HeLa , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Esferoides Celulares/efectos de los fármacos
15.
J Photochem Photobiol B ; 186: 169-177, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30064063

RESUMEN

Photodynamic therapy (PDT) is an anticancer modality that exploits singlet oxygen and other reactive oxygen species, that are formed by selective irradiation of photosensitive molecules, to kill cancer cells. Most photosensitizers (PS) are hydrophobic and poorly soluble in water and several nanoplatforms have been established to achieve a more efficient delivery. Moreover, the covalent binding of the PS to nanoparticles could in principle reduce unwanted bleaching of the PS, while preserving its photodynamic activity. In this study we report the synthesis of a novel non-symmetrical diaryl-porphyrin suitably modified with a polymerizable pendant, that was used for the preparation of core-shell poly-methyl methacrylate nanoparticles covalently loaded with the diaryl-porphyrin (PMMA@PorVa). Particles, which were prepared with two different porphyrin loadings, are spherical in shape and with a narrow hydrodynamic diameter around 70 nm and a positive zeta potential. Their photo-toxicity was tested against the human colon carcinoma cell line HCT116 and the human ovarian adenocarcinoma cell line SKOV3. PMMA@PorVa were able to inhibit tumor cells proliferation similarly to the free porphyrin, thus confirming that the covalent attachment of the PS to PMMA nanoparticles allows to preserve PS photodynamic activity and in vitro efficacy. Flow cytometric analysis of apoptotic cells demonstrates that, especially in SKOV3 cells, the free diaryl-porphyrin is more effective in inducing apoptosis.


Asunto(s)
Nanopartículas/química , Fármacos Fotosensibilizantes/química , Polimetil Metacrilato/química , Porfirinas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Células HCT116 , Humanos , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Porfirinas/farmacología , Porfirinas/uso terapéutico
16.
Mater Sci Eng C Mater Biol Appl ; 90: 476-484, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29853116

RESUMEN

Doxorubicin is one of the most effective chemotherapeutic agents for the treatment of several neoplastic conditions, such as leukemia, neuroblastoma, soft tissue and bone sarcomas, breast cancer, ovarian cancer and others. However, its clinical application is limited by cardiotoxicity, such as cardiomyopathy, that once developed carries a poor prognosis and is frequently fatal. The controlled release of doxorubicin by means of a smart carrier is a strategy to overcome the aforementioned drawback. Herein, doxorubicin/keratin nanoparticles were prepared by loading the drug through ionic gelation and aggregation methods, without using cross linkers, organic solvents neither surfactants. Both methodologies afford nanoparticles with yields up to 100 wt%, depending on the loading amount of doxorubicin. Although aggregation yield smaller nanoparticles (≈100 nm), ionic gelation allows a higher drug loading (up to 30 wt%,). More importantly, nanoparticles obtained through this procedure display a pH-responsive release of the drug: indeed Peppas-Salhin model suggests that, the doxorubicin release mechanism is predominantly controlled by diffusion at pH 7.4 and by protein swelling at pH 5. Moreover, nanoparticles prepared by ionic gelation resulted in more efficient cell killing of MDA-MB-231 and MCF-7 breast cancer cells than those prepared by aggregation. Based on the herein presented preliminary results, ionic gelation emerges as a promising approach for the preparation of keratin-based doxorubicin nanocarriers for cancer therapy, that is worth to further investigate.


Asunto(s)
Doxorrubicina/química , Portadores de Fármacos/química , Queratinas/química , Nanopartículas/química , Solventes/química , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Células MCF-7
17.
Int J Nanomedicine ; 13: 4847-4867, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30214193

RESUMEN

PURPOSE: Taxanes are highly effective cytotoxic drugs for progressing breast cancer treatment. However, their poor solubility and high toxicity urge the development of innovative formulations of potential clinical relevance. MATERIALS AND METHODS: By using a simple and straightforward aggregation method, we have generated paclitaxel (PTX) loaded in keratin nanoparticles (KER-NPs-PTX). Their activities were tested against human breast cancer MCF-7 and MDA MB 231 cell lines in conventional two-dimensional (2D) cultures and in a dynamic three-dimensional (3D) model with perfused bioreactor (p3D). Moreover, KER-NPs-PTX activity was compared to free PTX and to PTX loaded in albumin nanoparticles (HSA-NPs-PTX). Cell viability, induction of apoptosis, and gene expression analysis were used as readouts. RESULTS: In 2D cultures, KER-NPs-PTX was able to inhibit tumor cell viability and to induce apoptosis similarly to PTX and HSA-NPs-PTX. In the p3D model, a lower sensitivity of tumor cells to treatments was observed. Importantly, only KER-NPs-PTX was able to induce a statistically significant increase in apoptotic cell percentages following 24 h treatment for MCF-7 (16.7±4.0 early and 11.3±4.9 late apoptotic cells) and 48 h treatment for MDA MB 231 (21.3±11.2 early and 10.5±1.8 late apoptotic cells) cells. These effects were supported, at least for MCF-7 cells, by significant increases in the expression of proapoptotic BAX gene (5.8±0.5) 24 h after treatment and of cleaved caspase 3 (CC3) protein. CONCLUSION: KER-NPs-PTX, generated by a simple procedure, is characterized by high water solubility and enhanced PTX-loading ability, as compared to HSA-NPs-PTX. Most importantly, it appears to be able to exert effective anticancer activities on breast cancer cells cultured in 2D or in p3D models.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Queratinas/química , Modelos Biológicos , Nanopartículas/química , Paclitaxel/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Nanopartículas/ultraestructura , Paclitaxel/farmacología
18.
Life Sci ; 215: 106-112, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30412722

RESUMEN

Polymethylmethacrylate core-shell fluorescent nanoparticles promote, in human lung A549 cancer cells, the internalization of a molecular beacon (MB) specific for survivin mRNA, an anti-apoptotic protein overexpressed in cancer cells. AIMS: To design an effective drug delivery system, the knowledge of the uptake mechanism and of the nanoparticles (NPs) and MB fate is required. MATERIALS AND METHODS AND KEY FINDINGS: Experiments with dextran as marker for endocytosis showed that in the presence of NPs the number of endocytic vesicles per cell doubled and their mean size significantly (p < 0.001) increased with respect to controls in absence of NPs, indicating an involvement of NPs in the endocytotic process. By using LysoTracker™ Deep Red, as marker of lysosomes, we found that nanoparticles co-localize with lysosomes. Moreover, a cellular release of nanoparticles detected in the culture medium, suggested a role of lysosomal exocytosis in nanoparticle elimination. The MB fluorescence in proximity of the labeled Endoplasmic Reticulum was indicative that the opening of the MB occurs in proximity of its target mRNA. SIGNIFICANCE: The results show the involvement of endocytotic pathway in the uptake of NPs, which are an appropriate delivery system capable of being eliminated by cells. Furthermore the data confirm that the MB can be considered an effective tool for the intracellular sensing.


Asunto(s)
Sistemas de Liberación de Medicamentos , Endocitosis/efectos de los fármacos , Nanopartículas/administración & dosificación , Polímeros/química , Survivin/metabolismo , Células A549 , Dextranos/administración & dosificación , Dextranos/metabolismo , Retículo Endoplásmico/metabolismo , Fluorescencia , Humanos , Neoplasias Pulmonares/metabolismo , Lisosomas/metabolismo , Nanopartículas/metabolismo , Polimetil Metacrilato/química , ARN Mensajero/metabolismo , Survivin/genética
19.
Ann Ist Super Sanita ; 43(2): 171-5, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17634666

RESUMEN

Therapeutic plasma exchange is an extra-corporeal technique able to remove from blood macromolecules and/or replace deficient plasma factors. It is the treatment of choice in hyperviscosity syndrome, due to the presence of quantitatively or qualitatively abnormal plasma proteins such as paraproteins. In spite of a general consensus on the indications to therapeutic plasma exchange in hyperviscosity syndrome, data or guide lines about the criteria to plan the treatment are still lacking. We studied the rheological effect of plasma exchange in 20 patients with plasma hyperviscosity aiming to give data useful for a rational planning of the treatment. Moreover, we verified the clinical applicability of the estimation of plasma viscosity by means of Kawai's equation. Plasma exchange decreases plasma viscosity about 20-30% for session. Only one session is required to normalize plasma viscosity when it is < 2.2 mPas, whereas a maximum of 3 session are required when it is > 2.2 till to 6 mPas. A fourth session is useless, especially if the inter-session interval is < 15 days. By means of a polynomial equation, knowing basal-plasma viscosity and the disease of a patient, we can calculate the decrease of viscosity obtainable by each session of plasma exchange then the number of session required to normalize the viscosity. Kawai's equation is able to evaluate plasma viscosity in healthy volunteers, but it is not clinically reliable in paraproteinemias.


Asunto(s)
Enfermedades Hematológicas/terapia , Hemorreología , Intercambio Plasmático , Anciano , Algoritmos , Proteínas Sanguíneas/aislamiento & purificación , Viscosidad Sanguínea , Femenino , Guías como Asunto , Enfermedades Hematológicas/sangre , Humanos , Masculino , Persona de Mediana Edad
20.
Clin Hemorheol Microcirc ; 65(2): 175-183, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27340762

RESUMEN

Dialysis patients present a cardiovascular risk substantially higher than general population, due to both traditional and non-traditional risk factors. Hemorheologic alterations have been extensively described in hemodialysis patients (HD), while little data on hemorheology exist about peritoneal dialysis patients (PD). Aim of our study is to characterize the hemorheological profile of 49 PD, and to compare these data with HD and healthy volunteers. PD showed an improvement of parameters related to macro-circulation (plasma viscosity, whole blood viscosity at 1-Hz, erythrocyte aggregation index and yield stress) when compared to HD, while microcirculatory function resulted severely impaired, as expressed by high values for whole blood viscosity 200-Hz shear rate and lower erythrocyte deformability (ED). In conclusion, we found hemorheologic alterations in PD, with substantial differences with respect to HD; in particular, PD showed profound dysfunction in microcirculatory flow with impaired ED. This alterations may act as a risk factor for accelerated atherosclerosis and precipitate cardiovascular events, and it may have a detrimental effect in the peritoneal microcirculation promoting endothelial activation with subsequent fibrosis, leading to peritoneal membrane malfunctioning.


Asunto(s)
Viscosidad Sanguínea/fisiología , Agregación Eritrocitaria/fisiología , Deformación Eritrocítica/fisiología , Hemorreología , Diálisis Peritoneal/efectos adversos , Adulto , Anciano , Índices de Eritrocitos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA