Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Eur J Neurosci ; 54(3): 4934-4952, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34216157

RESUMEN

Activation of cannabinoid 1 receptors (CB1 R) modulates multiple behaviours, including exploration, motor coordination and response to psychostimulants. It is known that CB1 R expressed by either excitatory or inhibitory neurons mediates different behavioural responses to CB1 R activation, yet the involvement of CB1 R expressed by medium spiny neurons (MSNs), the neuronal subpopulation that expresses the highest level of CB1 R in the CNS, remains unknown. We report a new genetically modified mouse line that expresses functional CB1 R in MSN on a CB1 R knockout (KO) background (CB1 R(MSN) mice). The absence of cannabimimetic responses measured in CB1 R KO mice was not rescued in CB1 R(MSN) mice, nor was decreased spontaneous locomotion, impaired instrumental behaviour or reduced amphetamine-triggered hyperlocomotion measured in CB1 R KO mice. Significantly, reduced novel environment exploration of an open field and absence of amphetamine sensitization (AS) measured in CB1 R KO mice were fully rescued in CB1 R(MSN) mice. Impaired motor coordination in CB1 R KO mice measured on the Rotarod was partially rescued in CB1 R(MSN) mice. Thus, CB1 R expressed by MSN control exploration, motor coordination, and AS. Our study demonstrates a new functional roles for cell specific CB1 R expression and their causal link in the control of specific behaviors.


Asunto(s)
Anfetamina , Cannabinoides , Cuerpo Estriado , Receptor Cannabinoide CB1 , Anfetamina/farmacología , Animales , Ratones , Ratones Noqueados , Neuronas , Receptor Cannabinoide CB1/genética
2.
J Neurosci Res ; 97(12): 1559-1578, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31298422

RESUMEN

Small fluctuations in striatal glutamate and dopamine are required to establish goal-directed behaviors and motor learning, while large changes appear to underlie many neuropsychological disorders, including drug dependence and Parkinson's disease. A better understanding of how variations in neurotransmitter availability can modify striatal circuitry will lead to new therapeutic targets for these disorders. Here, we examined dopamine-induced plasticity in prefrontal cortical projections to the nucleus accumbens (NAc) core. We combined behavioral measures of male mice, presynaptic optical studies of glutamate release kinetics from prefrontal cortical projections, and postsynaptic electrophysiological recordings of spiny projection neurons within the NAc core. Our data show that repeated amphetamine promotes long-lasting but reversible changes along the corticoaccumbal pathway. In saline-treated mice, coincident cortical stimulation and dopamine release promoted presynaptic filtering by depressing exocytosis from glutamatergic boutons with a low-probability of release. The repeated use of amphetamine caused a frequency-dependent, progressive, and long-lasting depression in corticoaccumbal activity during withdrawal. This chronic presynaptic depression was relieved by a drug challenge which potentiated glutamate release from synapses with a low-probability of release. D1 receptors generated this synaptic potentiation, which corresponded with the degree of locomotor sensitization in individual mice. By reversing the synaptic depression, drug reinstatement may promote allostasis by returning corticoaccumbal activity to a more stable and normalized state. Therefore, dopamine-induced synaptic filtering of excitatory signals entering the NAc core in novice mice and paradoxical excitation of the corticoaccumbal pathway during drug reinstatement may encode motor learning, habit formation, and dependence.


Asunto(s)
Locomoción/fisiología , Plasticidad Neuronal , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología , Anfetamina/administración & dosificación , Animales , Dopamina/fisiología , Ácido Glutámico/fisiología , Locomoción/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Receptores de Dopamina D1/fisiología
3.
J Neurosci ; 33(25): 10405-26, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23785153

RESUMEN

Locomotion and cue-dependent behaviors are modified through corticostriatal signaling whereby short-term increases in dopamine availability can provoke persistent changes in glutamate release that contribute to neuropsychiatric disorders, including Parkinson's disease and drug dependence. We found that withdrawal of mice from repeated amphetamine treatment caused a chronic presynaptic depression (CPD) in glutamate release that was most pronounced in corticostriatal terminals with a low probability of release and lasted >50 d in treated mice. An amphetamine challenge reversed CPD via a dopamine D1-receptor-dependent paradoxical presynaptic potentiation (PPP) that increased corticostriatal activity in direct pathway medium spiny neurons. This PPP was correlated with locomotor responses after a drug challenge, suggesting that it may underlie the sensitization process. Experiments in brain slices and in vivo indicated that dopamine regulation of acetylcholine release from tonically active interneurons contributes to CPD, PPP, locomotor sensitization, and cognitive ability. Therefore, a chronic decrease in corticostriatal activity during withdrawal is regulated around a new physiological range by tonically active interneurons and returns to normal upon reexposure to amphetamine, suggesting that this paradoxical return of striatal activity to a more stable, normalized state may represent an additional source of drug motivation during abstinence.


Asunto(s)
Acetilcolina/fisiología , Inhibidores de Captación Adrenérgica/farmacología , Anfetamina/farmacología , Ácido Glutámico/fisiología , Neostriado/fisiología , Plasticidad Neuronal/fisiología , Receptores Presinapticos/fisiología , Sinapsis/fisiología , Animales , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/fisiología , Dependovirus/genética , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Vectores Genéticos , Interneuronas/fisiología , Locomoción/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Neostriado/citología , Neostriado/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Equilibrio Postural/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Receptores Presinapticos/efectos de los fármacos , Sinapsis/efectos de los fármacos
4.
Ann Neurol ; 73(3): 355-69, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23225132

RESUMEN

OBJECTIVE: Prenatal cocaine exposure (PCE) can cause persistent neuropsychological and motor abnormalities in affected children, but the physiological consequences of PCE remain unclear. Conclusions drawn from clinical studies can sometimes be confounded by polysubstance abuse and nutritional deprivation. However, existing observations suggest that cocaine exposure in utero, as in adults, increases synaptic dopamine and promotes enduring dopamine-dependent plasticity at striatal synapses, altering behaviors and basal ganglia function. METHODS: We used a combination of behavioral measures, electrophysiology, optical imaging, and biochemical and electrochemical recordings to examine corticostriatal activity in adolescent mice exposed to cocaine in utero. RESULTS: We show that PCE caused abnormal dopamine-dependent behaviors, including heightened excitation following stress and blunted locomotor augmentation after repeated treatment with amphetamine. These abnormal behaviors were consistent with abnormal γ-aminobutyric acid (GABA) interneuron function, which promoted a reversible depression in corticostriatal activity. PCE hyperpolarized and reduced tonic GABA currents in both fast-spiking and persistent low-threshold spiking type GABA interneurons to increase tonic inhibition at GABAB receptors on presynaptic corticostriatal terminals. Although D2 receptors paradoxically increased glutamate release following PCE, normal corticostriatal modulation by dopamine was reestablished with a GABAA receptor antagonist. INTERPRETATION: The dynamic alterations at corticostriatal synapses that occur in response to PCE parallel the reported effects of repeated psychostimulants in mature animals, but differ in being specifically generated through GABAergic mechanisms. Our results indicate approaches that normalize GABA and D2 receptor-dependent synaptic plasticity may be useful for treating the behavioral effects of PCE and other developmental disorders that are generated through abnormal GABAergic signaling.


Asunto(s)
Corteza Cerebral/patología , Cocaína/toxicidad , Cuerpo Estriado/patología , Inhibidores de Captación de Dopamina/toxicidad , Inhibición Neural/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Factores de Edad , Análisis de Varianza , Anestésicos Locales/farmacología , Animales , Biofisica , Dopamina/metabolismo , Dopaminérgicos/farmacología , Interacciones Farmacológicas , Estimulación Eléctrica/efectos adversos , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Conducta Exploratoria/efectos de los fármacos , Femenino , GABAérgicos/farmacología , Proteínas Fluorescentes Verdes/genética , Suspensión Trasera/métodos , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Lidocaína/análogos & derivados , Lidocaína/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/fisiología , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Placa-Clamp , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Quinoxalinas/farmacología , Quinpirol/farmacología , Receptores de GABA-A/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Bloqueadores de los Canales de Sodio/farmacología , Estadísticas no Paramétricas , Tetrodotoxina/farmacología
5.
Proc Natl Acad Sci U S A ; 108(10): 4206-11, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21368124

RESUMEN

Signaling through N-methyl-D-aspartate-type glutamate receptors (NMDARs) is essential for the development of behavioral sensitization to psychostimulants such as amphetamine (AMPH). However, the cell type and brain region in which NMDAR signaling is required for AMPH sensitization remain unresolved. Here we use selective inactivation of Grin1, the gene encoding the essential NR1 subunit of NMDARs, in dopamine neurons or their medium spiny neuron (MSN) targets, to address this issue. We show that NMDAR signaling in dopamine neurons is not required for behavioral sensitization to AMPH. Conversely, removing NMDARs from MSNs that express the dopamine D1 receptor (D1R) significantly attenuated AMPH sensitization, and conditional, virus-mediated restoration of NR1 in D1R neurons in the nucleus accumbens (NAc) of these animals rescued sensitization. Interestingly, sensitization could also be restored by virus-mediated inactivation of NR1 in all remaining neurons in the NAc of animals lacking NMDARs on D1R neurons, or by removing NMDARs from all MSNs. Taken together, these data indicate that unbalanced loss of NMDAR signaling in D1R MSNs alone prevents AMPH sensitization, whereas a balanced loss of NMDARs from both D1R and dopamine D2 receptor-expressing (D2R) MSNs is permissive for sensitization.


Asunto(s)
Anfetaminas/farmacología , Neuronas/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Ratones , Ratones Noqueados , Neuronas/metabolismo , Transducción de Señal
6.
Pediatr Neurol ; 152: 16-19, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176223

RESUMEN

BACKGROUND: Levodopa is used to treat hyperkinetic movements in children with dopa-responsive dystonia. However, levodopa may also be helpful in treating other forms of dystonia when used beyond a brief trial period. METHODS: We performed a retrospective review of all children referred to our institution for evaluation of generalized dystonia and subsequently treated with carbidopa-levodopa. Motor function was assessed using video recordings and examination notes, quantified with the Burke-Fahn-Marsden Dystonia Rating Scale. RESULTS: Long-term treatment with carbidopa-levodopa moderately improved motor function, whereas short-term use did not. Carbidopa-levodopa was well tolerated without untoward effects. CONCLUSIONS: Dystonia is a significant cause of disability with limited effective treatment options. Published work is restricted but generally supports the findings of this review. A well-controlled study to examine the utility of carbidopa-levodopa treatment for dystonia is needed.


Asunto(s)
Distonía , Trastornos Distónicos , Niño , Humanos , Levodopa/uso terapéutico , Carbidopa/uso terapéutico , Distonía/diagnóstico , Trastornos Distónicos/tratamiento farmacológico , Resultado del Tratamiento
7.
Front Neurosci ; 17: 1132173, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845429

RESUMEN

Objective: To assess the feasibility of a point-of-care 1-Tesla MRI for identification of intracranial pathologies within neonatal intensive care units (NICUs). Methods: Clinical findings and point-of-care 1-Tesla MRI imaging findings of NICU patients (1/2021 to 6/2022) were evaluated and compared with other imaging modalities when available. Results: A total of 60 infants had point-of-care 1-Tesla MRI; one scan was incompletely terminated due to motion. The average gestational age at scan time was 38.5 ± 2.3 weeks. Transcranial ultrasound (n = 46), 3-Tesla MRI (n = 3), or both (n = 4) were available for comparison in 53 (88%) infants. The most common indications for point-of-care 1-Tesla MRI were term corrected age scan for extremely preterm neonates (born at greater than 28 weeks gestation age, 42%), intraventricular hemorrhage (IVH) follow-up (33%), and suspected hypoxic injury (18%). The point-of-care 1-Tesla scan could identify ischemic lesions in two infants with suspected hypoxic injury, confirmed by follow-up 3-Tesla MRI. Using 3-Tesla MRI, two lesions were identified that were not visualized on point-of-care 1-Tesla scan: (1) punctate parenchymal injury versus microhemorrhage; and (2) small layering IVH in an incomplete point-of-care 1-Tesla MRI with only DWI/ADC series, but detectable on the follow-up 3-Tesla ADC series. However, point-of-care 1-Tesla MRI could identify parenchymal microhemorrhages, which were not visualized on ultrasound. Conclusion: Although limited by field strength, pulse sequences, and patient weight (4.5 kg)/head circumference (38 cm) restrictions, the Embrace® point-of-care 1-Tesla MRI can identify clinically relevant intracranial pathologies in infants within a NICU setting.

8.
J Neurosci ; 31(47): 17103-12, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22114279

RESUMEN

Phasic dopamine (DA) transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered DA signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how DA neuron activity is modulated. While excitatory drive onto DA neurons is critical for generating phasic DA responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in DA neurons, we generated mice lacking the ß3 subunit of the GABA(A) receptor specifically in DA neurons (ß3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. DA neurons in midbrain slices from ß3-KO mice exhibited attenuated GABA-evoked IPSCs. Furthermore, electrical stimulation of excitatory afferents to DA neurons elicited more DA release in the nucleus accumbens of ß3-KO mice as measured by fast-scan cyclic voltammetry. ß3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto DA neurons. ß3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in ß3-KO mice. Finally, we found that ß3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABA(A) signaling in DA neurons in appetitive learning and decision-making.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Aprendizaje/fisiología , Receptores de GABA-A/fisiología , Recompensa , Asunción de Riesgos , Transducción de Señal/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Probabilidad , Receptores de GABA-A/deficiencia , Receptores de GABA-A/genética
9.
J Physiol ; 590(16): 3743-69, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22586226

RESUMEN

Interactions between dopamine and glutamate signalling within the nucleus accumbens core are required for behavioural reinforcement and habit formation. Dopamine modulates excitatory glutamatergic signals from the prefrontal cortex, but the precise mechanism has not been identified. We combined optical and electrophysiology recordings in murine slice preparations from CB1 receptor-null mice and green fluorescent protein hemizygotic bacterial artificial chromosome transgenic mice to show how dopamine regulates glutamatergic synapses specific to the striatonigral and striatopallidal basal ganglia pathways. At low cortical frequencies, dopamine D1 receptors promote glutamate release to both D1 and D2 receptor-expressing medium spiny neurons while D2 receptors specifically inhibit excitatory inputs to D2 receptor-expressing cells by decreasing exocytosis from cortical terminals with a low probability of release. At higher cortical stimulation frequencies, this dopaminergic modulation of presynaptic activity is occluded by adenosine and endocannabinoids. Glutamatergic inputs to both D1 and D2 receptor-bearing medium spiny neurons are inhibited by adenosine, released upon activation of NMDA and AMPA receptors and adenylyl cyclase in D1 receptor-expressing cells. Excitatory inputs to D2 receptor-expressing cells are specifically inhibited by endocannabinoids, whose release is dependent on D2 and group 1 metabotropic glutamate receptors. The convergence of excitatory and inhibitory modulation of corticoaccumbal activity by dopamine, adenosine and endocannabinoids creates subsets of corticoaccumbal inputs, selectively and temporally reinforces strong cortical signals through the striatonigral pathway while inhibiting the weak, and may provide a mechanism whereby continued attention might be focused on behaviourally salient information.


Asunto(s)
Dopamina/metabolismo , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología , Transmisión Sináptica/fisiología , Adenosina/metabolismo , Anfetamina/farmacología , Animales , Endocannabinoides/farmacología , Proteínas Fluorescentes Verdes , Masculino , Ratones , Ratones Transgénicos , Imagen Óptica , Corteza Prefrontal/citología , Terminales Presinápticos , Compuestos de Piridinio , Compuestos de Amonio Cuaternario , Receptores AMPA/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Glutamato/fisiología , Receptores de N-Metil-D-Aspartato/fisiología
10.
Front Neurosci ; 16: 957018, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36161157

RESUMEN

There has been increasing evidence of White Matter (WM) microstructural disintegrity and connectome disruption in Autism Spectrum Disorder (ASD). We evaluated the effects of age on WM microstructure by examining Diffusion Tensor Imaging (DTI) metrics and connectome Edge Density (ED) in a large dataset of ASD and control patients from different age cohorts. N = 583 subjects from four studies from the National Database of Autism Research were included, representing four different age groups: (1) A Longitudinal MRI Study of Infants at Risk of Autism [infants, median age: 7 (interquartile range 1) months, n = 155], (2) Biomarkers of Autism at 12 months [toddlers, 32 (11)m, n = 102], (3) Multimodal Developmental Neurogenetics of Females with ASD [adolescents, 13.1 (5.3) years, n = 230], (4) Atypical Late Neurodevelopment in Autism [young adults, 19.1 (10.7)y, n = 96]. For each subject, we created Fractional Anisotropy (FA), Mean- (MD), Radial- (RD), and Axial Diffusivity (AD) maps as well as ED maps. We performed voxel-wise and tract-based analyses to assess the effects of age, ASD diagnosis and sex on DTI metrics and connectome ED. We also optimized, trained, tested, and validated different combinations of machine learning classifiers and dimensionality reduction algorithms for prediction of ASD diagnoses based on tract-based DTI and ED metrics. There is an age-dependent increase in FA and a decline in MD and RD across WM tracts in all four age cohorts, as well as an ED increase in toddlers and adolescents. After correction for age and sex, we found an ASD-related decrease in FA and ED only in adolescents and young adults, but not in infants or toddlers. While DTI abnormalities were mostly limited to the corpus callosum, connectomes showed a more widespread ASD-related decrease in ED. Finally, the best performing machine-leaning classification model achieved an area under the receiver operating curve of 0.70 in an independent validation cohort. Our results suggest that ASD-related WM microstructural disintegrity becomes evident in adolescents and young adults-but not in infants and toddlers. The ASD-related decrease in ED demonstrates a more widespread involvement of the connectome than DTI metrics, with the most striking differences being localized in the corpus callosum.

11.
J Neurosci ; 29(8): 2414-27, 2009 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-19244517

RESUMEN

Huntington disease is a genetic neurodegenerative disorder that produces motor, neuropsychiatric, and cognitive deficits and is caused by an abnormal expansion of the CAG tract in the huntingtin (htt) gene. In humans, mutated htt induces a preferential loss of medium spiny neurons in the striatum and, to a lesser extent, a loss of cortical neurons as the disease progresses. The mechanisms causing these degenerative changes remain unclear, but they may involve synaptic dysregulation. We examined the activity of the corticostriatal pathway using a combination of electrophysiological and optical imaging approaches in brain slices and acutely dissociated neurons from the YAC128 mouse model of Huntington disease. The results demonstrated biphasic age-dependent changes in corticostriatal function. At 1 month, before the behavioral phenotype develops, synaptic currents and glutamate release were increased. At 7 and 12 months, after the development of the behavioral phenotype, evoked synaptic currents were reduced. Glutamate release was decreased by 7 months and was markedly reduced by 12 months. These age-dependent alterations in corticostriatal activity were paralleled by a decrease in dopamine D(2) receptor modulation of the presynaptic terminal. Together, these findings point to dynamic alterations at the corticostriatal pathway and emphasize that therapies directed toward preventing or alleviating symptoms need to be specifically designed depending on the stage of disease progression.


Asunto(s)
Envejecimiento/fisiología , Corteza Cerebral/fisiopatología , Cuerpo Estriado/fisiopatología , Enfermedad de Huntington/patología , Vías Nerviosas/fisiopatología , Factores de Edad , Análisis de Varianza , Animales , Biofisica , Cadmio/farmacología , Células Cultivadas , Cromosomas Artificiales de Levadura/genética , Modelos Animales de Enfermedad , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/fisiología , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Estadísticas no Paramétricas , Factores de Tiempo , Expansión de Repetición de Trinucleótido/genética
12.
Brain Sci ; 10(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255421

RESUMEN

BACKGROUND: Parkinsonism is caused by dopamine (DA) insufficiency and results in a hypokinetic movement disorder. Treatment with L-Dopa can restore DA availability and improve motor function, but patients can develop L-Dopa-induced dyskinesia (LID), a secondary hyperkinetic movement disorder. The mechanism underlying LID remains unknown, and new treatments are needed. Experiments in mice have shown that DA deficiency promotes an imbalance between striatal acetylcholine (ACh) and DA that contributes to motor dysfunction. While treatment with L-Dopa improves DA availability, it promotes a paradoxical rise in striatal ACh and a further increase in the ACh to DA ratio may promote LID. METHODS: We used conditional Slc6a3DTR/+ mice to model progressive DA deficiency and the ß-adrenergic receptor (ß-AR) antagonist propranolol to limit the activity of striatal cholinergic interneurons (ChIs). DA-deficient mice were treated with L-Dopa and the dopa decarboxylase inhibitor benserazide. LID and motor performance were assessed by rotarod, balance beam, and open field testing. Electrophysiological experiments characterized the effects of ß-AR ligands on striatal ChIs. RESULTS: LID was observed in a subset of DA-deficient mice. Treatment with propranolol relieved LID and motor hyperactivity. Electrophysiological experiments showed that ß-ARs can effectively modulate ChI firing. CONCLUSIONS: The work suggests that pharmacological modulation of ChIs by ß-ARs might provide a therapeutic option for managing LID.

13.
Dev Med Child Neurol ; 51(5): 408-11, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19388151

RESUMEN

Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders, affecting 36 in 100,000 people. CMT type 1A (hereditary motor and sensory neuropathy) is the most frequent form of this disease, affecting 60 to 80% of the CMT population, but its diagnosis may be delayed because of inconsistent clinical signs and symptoms and a considerable variability in age at onset. Here, we report on four children (aged 10-17y) who presented with neuromuscular hip dysplasia and other orthopedic abnormalities but were only later diagnosed with CMT 1A. Hip dysplasia may be the initial clinical sign in CMT, so children with late-manifesting hip disease (i.e. age >8y) should be examined for signs of peripheral neuropathy, particularly when presenting with a 'waddling' or broad-based gait.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Trastornos Neurológicos de la Marcha/etiología , Articulación de la Cadera/patología , Articulación de la Cadera/fisiopatología , Adolescente , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Técnicas de Diagnóstico Neurológico , Femenino , Marcha , Trastornos Neurológicos de la Marcha/patología , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Masculino
14.
Lancet Child Adolesc Health ; 3(12): 917-928, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31653548

RESUMEN

The diagnosis and management of movement disorders in children can be improved by understanding the pathways, neurons, ion channels, and receptors involved in motor learning and control. In this Review, we use a localisation approach to examine the anatomy, physiology, and circuitry of the basal ganglia and highlight the mechanisms that underlie some of the major movement disorders in children. We review the connections between the basal ganglia and the thalamus and cortex, address the basic clinical definitions of movement disorders, and then place diseases within an anatomical or physiological framework that highlights basal ganglia function. We discuss how new pharmacological, behavioural, and electrophysiological approaches might benefit children with movement disorders by modifying synaptic function. A better understanding of the mechanisms underlying movement disorders allows improved diagnostic and treatment decisions.


Asunto(s)
Ganglios Basales/fisiología , Corteza Cerebral/fisiología , Dopamina/deficiencia , Trastornos del Movimiento/fisiopatología , Tálamo/fisiología , Adolescente , Ganglios Basales/anatomía & histología , Corteza Cerebral/anatomía & histología , Niño , Terapia Cognitivo-Conductual/métodos , Fenómenos Electrofisiológicos/fisiología , Humanos , Neuronas Motoras/fisiología , Trastornos del Movimiento/líquido cefalorraquídeo , Trastornos del Movimiento/genética , Trastornos del Movimiento/terapia , Sinapsis/fisiología , Tálamo/anatomía & histología , Adulto Joven
15.
Neuroscientist ; 25(5): 475-490, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30678530

RESUMEN

The striatum is a critical component of the brain that controls motor, reward, and executive function. This ancient and phylogenetically conserved structure forms a central hub where rapid instinctive, reflexive movements and behaviors in response to sensory stimulation or the retrieval of emotional memory intersect with slower planned motor movements and rational behaviors. This review emphasizes two distinct pathways that begin in the thalamus and converge in the striatum to differentially affect movements, behaviors, and decision making. The convergence of excitatory glutamatergic activity from the thalamus and cortex, along with dopamine release in response to novel stimulation, provide the basis for motor learning, reward seeking, and habit formation. We outline how the rules derived through research on neural pathways may enhance the predictability of reflexive actions and rational responses studied in behavioral economics.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Toma de Decisiones/fisiología , Neuronas/fisiología , Animales , Dopamina/fisiología , Emociones/fisiología , Ácido Glutámico/fisiología , Hábitos , Humanos , Aprendizaje/fisiología , Vías Nerviosas/fisiología , Recompensa , Tálamo/fisiología
16.
Neuron ; 103(6): 1056-1072.e6, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31324539

RESUMEN

Motor and cognitive functions depend on the coordinated interactions between dopamine (DA) and acetylcholine (ACh) at striatal synapses. Increased ACh availability was assumed to accompany DA deficiency based on the outcome of pharmacological treatments and measurements in animals that were critically depleted of DA. Using Slc6a3DTR/+ diphtheria-toxin-sensitive mice, we demonstrate that a progressive and L-dopa-responsive DA deficiency reduces ACh availability and the transcription of hyperpolarization-activated cation (HCN) channels that encode the spike timing of ACh-releasing tonically active striatal interneurons (ChIs). Although the production and release of ACh and DA are reduced, the preponderance of ACh over DA contributes to the motor deficit. The increase in striatal ACh relative to DA is heightened via D1-type DA receptors that activate ChIs in response to DA release from residual axons. These results suggest that stabilizing the expression of HCN channels may improve ACh-DA reciprocity and motor function in Parkinson's disease (PD). VIDEO ABSTRACT.


Asunto(s)
Acetilcolina/metabolismo , Neuronas Colinérgicas/metabolismo , Dopamina/deficiencia , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Interneuronas/metabolismo , Neostriado/metabolismo , Enfermedad de Parkinson/metabolismo , Anfetamina/farmacología , Animales , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Dopaminérgicos/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Ratones , Neostriado/citología , Neostriado/efectos de los fármacos , Neostriado/fisiopatología , Enfermedad de Parkinson/fisiopatología , Técnicas de Placa-Clamp , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transcripción Genética
17.
Neurobiol Stress ; 11: 100187, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31832507

RESUMEN

The prefrontal cortex (PFC) mediates higher cognition but is impaired by stress exposure when high levels of catecholamines activate calcium-cAMP-protein kinase A (PKA) signaling. The current study examined whether stress and increased cAMP-PKA signaling in rat medial PFC (mPFC) reduce pyramidal cell firing and impair working memory by activating KCNQ potassium channels. KCNQ2 channels were found in mPFC layers II/III and V pyramidal cells, and patch-clamp recordings demonstrated KCNQ currents that were increased by forskolin or by chronic stress exposure, and which were associated with reduced neuronal firing. Low dose of KCNQ blockers infused into rat mPFC improved cognitive performance and prevented acute pharmacological stress-induced deficits. Systemic administration of low doses of KCNQ blocker also improved performance in young and aged rats, but higher doses impaired performance and occasionally induced seizures. Taken together, these data demonstrate that KCNQ channels have powerful influences on mPFC neuronal firing and cognitive function, contributing to stress-induced PFC dysfunction.

18.
Neuron ; 42(4): 653-63, 2004 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-15157425

RESUMEN

Dopamine input to the striatum is required for voluntary motor movement, behavioral reinforcement, and responses to drugs of abuse. It is speculated that these functions are dependent on either excitatory or inhibitory modulation of corticostriatal synapses onto medium spiny neurons (MSNs). While dopamine modulates MSN excitability, a direct presynaptic effect on the corticostriatal input has not been clearly demonstrated. We combined optical monitoring of synaptic vesicle exocytosis from motor area corticostriatal afferents and electrochemical recordings of striatal dopamine release to directly measure effects of dopamine at the level of individual presynaptic terminals. Dopamine released by either electrical stimulation or amphetamine acted via D2 receptors to inhibit the activity of subsets of corticostriatal terminals. Optical and electrophysiological data suggest that heterosynaptic inhibition was enhanced by higher frequency stimulation and was selective for the least active terminals. Thus, dopamine, by filtering less active inputs, appears to reinforce specific sets of corticostriatal synaptic connections.


Asunto(s)
Vías Aferentes/metabolismo , Corteza Cerebral/metabolismo , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Neostriado/metabolismo , Terminales Presinápticos/metabolismo , Transmisión Sináptica/fisiología , Vías Aferentes/efectos de los fármacos , Vías Aferentes/ultraestructura , Anfetamina/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/ultraestructura , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Retroalimentación/efectos de los fármacos , Retroalimentación/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neostriado/efectos de los fármacos , Neostriado/ultraestructura , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/ultraestructura , Compuestos de Piridinio , Compuestos de Amonio Cuaternario , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura
20.
Neuron ; 97(3): 494-510, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29420932

RESUMEN

Many learned responses depend on the coordinated activation and inhibition of synaptic pathways in the striatum. Local dopamine neurotransmission acts in concert with a variety of neurotransmitters to regulate cortical, thalamic, and limbic excitatory inputs to drive the direct and indirect striatal spiny projection neuron outputs that determine the activity, sequence, and timing of learned behaviors. We review recent advances in the characterization of stereotyped neuronal and operant responses that predict and then obtain rewards. These depend on the local release of dopamine at discrete times during behavioral sequences, which, acting with glutamate, provides a presynaptic filter to select which excitatory synapses are inhibited and which signals pass to indirect pathway circuits. This is followed by dopamine-dependent activation of specific direct pathway circuits to procure a reward. These steps may provide a means by which higher organisms learn behaviors in response to feedback from the environment.


Asunto(s)
Conducta Animal , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Dopamina/fisiología , Neuronas/fisiología , Recompensa , Sinapsis/fisiología , Animales , Condicionamiento Operante , Vías Nerviosas/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA