Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neurophysiol ; 116(6): 2523-2540, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27605535

RESUMEN

Mitochondria are major suppliers of cellular energy in neurons; however, utilization of energy from glycolysis vs. mitochondrial oxidative phosphorylation (OxPhos) in the presynaptic compartment during neurotransmission is largely unknown. Using presynaptic and postsynaptic recordings from the mouse calyx of Held, we examined the effect of acute selective pharmacological inhibition of glycolysis or mitochondrial OxPhos on multiple mechanisms regulating presynaptic function. Inhibition of glycolysis via glucose depletion and iodoacetic acid (1 mM) treatment, but not mitochondrial OxPhos, rapidly altered transmission, resulting in highly variable, oscillating responses. At reduced temperature, this same treatment attenuated synaptic transmission because of a smaller and broader presynaptic action potential (AP) waveform. We show via experimental manipulation and ion channel modeling that the altered AP waveform results in smaller Ca2+ influx, resulting in attenuated excitatory postsynaptic currents (EPSCs). In contrast, inhibition of mitochondria-derived ATP production via extracellular pyruvate depletion and bath-applied oligomycin (1 µM) had no significant effect on Ca2+ influx and did not alter the AP waveform within the same time frame (up to 30 min), and the resultant EPSC remained unaffected. Glycolysis, but not mitochondrial OxPhos, is thus required to maintain basal synaptic transmission at the presynaptic terminal. We propose that glycolytic enzymes are closely apposed to ATP-dependent ion pumps on the presynaptic membrane. Our results indicate a novel mechanism for the effect of hypoglycemia on neurotransmission. Attenuated transmission likely results from a single presynaptic mechanism at reduced temperature: a slower, smaller AP, before and independent of any effect on synaptic vesicle release or receptor activity.


Asunto(s)
Potenciales de Acción/fisiología , Glucólisis/fisiología , Terminales Presinápticos/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Antimetabolitos/farmacología , Tronco Encefálico/citología , Células Cultivadas , Corteza Cerebral/citología , Desoxiglucosa/farmacología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Glucosa/farmacología , Glucólisis/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Ácido Yodoacético/farmacología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Neuronas/efectos de los fármacos , Oligomicinas/farmacología , Terminales Presinápticos/efectos de los fármacos
2.
J Neurochem ; 128(6): 864-77, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24151868

RESUMEN

The subcellular compartmentalization of kinase activity allows for regulation of distinct cellular processes involved in cell differentiation or survival. The PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, is a neuroprotective kinase localized to cytosolic and mitochondrial compartments. While mitochondrial targeting of PINK1 is important for its activities regulating mitochondrial homeostasis, the physiological role of the cytosolic pool of PINK1 remains unknown. Here, we demonstrate a novel role for cytosolic PINK1 in neuronal differentiation/neurite maintenance. Over-expression of wild-type PINK1, but not a catalytically inactive form of PINK1(K219M), promoted neurite outgrowth in SH-SY5Y cells and increased dendritic lengths in primary cortical and midbrain dopaminergic neurons. To identify the subcellular pools of PINK1 involved in promoting neurite outgrowth, we transiently transfected cells with PINK1 constructs designed to target PINK1 to the outer mitochondrial membrane (OMM-PINK1) or restrict PINK1 to the cytosol (ΔN111-PINK1). Both constructs blocked cell death associated with loss of endogenous PINK1. However, transient expression of ΔN111-PINK1, but not of OMM-PINK1 or ΔN111-PINK1(K219M), promoted dendrite outgrowth in primary neurons, and rescued the decreased dendritic arborization of PINK1-deficient neurons. Mechanistically, the cytosolic pool of PINK1 regulated neurite morphology through enhanced anterograde transport of dendritic mitochondria and amplification of protein kinase A-related signaling pathways. Our data support a novel role for PINK1 in regulating dendritic morphogenesis.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dendritas/fisiología , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Animales , Línea Celular Tumoral , Corteza Cerebral/citología , Citosol/metabolismo , Femenino , Humanos , Masculino , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroblastoma , Enfermedad de Parkinson/metabolismo , Embarazo , Cultivo Primario de Células , Proteínas Quinasas/genética , Transducción de Señal/fisiología
3.
Mol Neurobiol ; 58(7): 3071-3083, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33624140

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive decline. In hippocampal neurons, the pathological features of AD include the accumulation of extracellular amyloid-beta peptide (Aß) accompanied by oxidative stress, mitochondrial dysfunction, and neuron loss. A decrease in neuroprotective Protein Kinase A (PKA) signaling contributes to mitochondrial fragmentation and neurodegeneration in AD. By associating with the protein scaffold Dual-Specificity Anchoring Protein 1 (D-AKAP1), PKA is targeted to mitochondria to promote mitochondrial fusion by phosphorylating the fission modulator dynamin-related protein 1 (Drp1). We hypothesized that (1) a decrease in the endogenous level of endogenous D-AKAP1 contributes to decreased PKA signaling in mitochondria and that (2) restoring PKA signaling in mitochondria can reverse neurodegeneration and mitochondrial fragmentation in neurons in AD models. Through immunohistochemistry, we showed that endogenous D-AKAP1, but not other mitochondrial proteins, is significantly reduced in primary neurons treated with Aß42 peptide (10µM, 24 h), and in the hippocampus and cortex from asymptomatic and symptomatic AD mice (5X-FAD). Transiently expressing wild-type, but not a PKA-binding deficient mutant of D-AKAP1, was able to reduce mitochondrial fission, dendrite retraction, and apoptosis in primary neurons treated with Aß42. Mechanistically, the protective effects of D-AKAP1/PKA are moderated through PKA-mediated phosphorylation of Drp1, as transiently expressing a PKA phosphomimetic mutant of Drp1 (Drp1-S656D) phenocopies D-AKAP1's ability to reduce Aß42-mediated apoptosis and mitochondrial fission. Overall, our data suggest that a loss of D-AKAP1/PKA contributes to mitochondrial pathology and neurodegeneration in an in vitro cell culture model of AD.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/toxicidad , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neuroprotección/fisiología , Fragmentos de Péptidos/toxicidad , Proteínas de Anclaje a la Quinasa A/antagonistas & inhibidores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Neuroprotección/efectos de los fármacos , Embarazo , Ratas
4.
Toxicol In Vitro ; 35: 188-201, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27327130

RESUMEN

Arsenic exposure has been implicated as a risk factor for cardiovascular diseases, metabolic disorders, and cancer, yet the role mitochondrial dysfunction plays in the cellular mechanisms of pathology is largely unknown. To investigate arsenic-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs), we exposed rat aortic smooth muscle cells (A7r5) to inorganic arsenic (iAs(III)) and its metabolite monomethylarsonous acid (MMA(III)) and compared their effects on mitochondrial function and oxidative stress. Our results indicate that MMA(III) is significantly more toxic to mitochondria than iAs(III). Exposure of VSMCs to MMA(III), but not iAs(III), significantly decreased basal and maximal oxygen consumption rates and concomitantly increased compensatory extracellular acidification rates, a proxy for glycolysis. Treatment with MMA(III) significantly increased hydrogen peroxide and superoxide levels compared to iAs(III). Exposure to MMA(III) resulted in significant decreases in mitochondrial ATP, aberrant perinuclear clustering of mitochondria, and decreased mitochondrial content. Mechanistically, we observed that mitochondrial superoxide and hydrogen peroxide contribute to mitochondrial toxicity, as treatment of cells with MnTBAP (a mitochondrial superoxide dismutase mimetic) and catalase significantly reduced mitochondrial respiration deficits and cell death induced by both arsenic compounds. Overall, our data demonstrates that MMA(III) is a mitochondria-specific toxicant that elevates mitochondrial and non-mitochondrial sources of ROS.


Asunto(s)
Arsénico/toxicidad , Mitocondrias/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Aorta/citología , Línea Celular , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Mitocondrias/metabolismo , Ratas , Superóxidos/metabolismo
5.
Acta Paediatr ; 96(9): 1269-74, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17718779

RESUMEN

UNLABELLED: Attention-deficit hyperactivity disorder (ADHD) is the most common cognitive and behavioural disorder diagnosed among school children. It is characterized by deficient attention and problem solving, along with hyperactivity and difficulty withholding incorrect responses. This highly prevalent disorder is estimated to affect 5-10% of children and in many cases, persists into adulthood, leading to 4% prevalence among adults. Converging evidence from epidemiologic, neuropsychology, neuroimaging, genetic and treatment studies shows that ADHD is a valid medical disorder. The majority of studies performed to assess genetic risk factors in ADHD have supported a strong familial nature of this disorder. Family studies have identified a 2- to 8-fold increase in the risk for ADHD in parents and siblings of children with ADHD. Various twin and adoption studies have also highlighted the highly genetic nature of ADHD. In fact the mean heritability of ADHD was shown to be 0.77, which is comparable to other neuropsychiatric disorders such as schizophrenia or bipolar disorder. However, several biological and environmental factors have also been proposed as risk factors for ADHD, including food additives/diet, lead contamination, cigarette and alcohol exposure, maternal smoking during pregnancy, and low birth weight. Many recent studies have specifically examined the relationships between ADHD and these extraneous factors. This review describes some of these possible risk factors. CONCLUSION: Although a substantial fraction of the aetiology of ADHD is due to genes, the studies reviewed in this article show that many environmental risk factors and potential gene-environment interactions also increase the risk for the disorder.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/etiología , Exposición a Riesgos Ambientales/efectos adversos , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Niño , Exposición a Riesgos Ambientales/estadística & datos numéricos , Femenino , Genotipo , Humanos , Fenotipo , Embarazo , Efectos Tardíos de la Exposición Prenatal/epidemiología , Psicología , Factores de Riesgo , Fumar/efectos adversos , Fumar/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA