Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biophys J ; 121(20): 3987-4000, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35978548

RESUMEN

Selective gene regulation is mediated by recognition of specific DNA sequences by transcription factors (TFs). The extremely challenging task of searching out specific cognate DNA binding sites among several million putative sites within the eukaryotic genome is achieved by complex molecular recognition mechanisms. Elements of this recognition code include the core binding sequence, the flanking sequence context, and the shape and conformational flexibility of the composite binding site. To unravel the extent to which DNA flexibility modulates TF binding, in this study, we employed experimentally guided molecular dynamics simulations of ternary complex of closely related Hox heterodimers Exd-Ubx and Exd-Scr with DNA. Results demonstrate that flexibility signatures embedded in the flanking sequences impact TF binding at the cognate binding site. A DNA sequence has intrinsic shape and flexibility features. While shape features are localized, our analyses reveal that flexibility features of the flanking sequences percolate several basepairs and allosterically modulate TF binding at the core. We also show that lack of flexibility in the motif context can render the cognate site resistant to protein-induced shape changes and subsequently lower TF binding affinity. Overall, this study suggests that flexibility-guided DNA shape, and not merely the static shape, is a key unexplored component of the complex DNA-TF recognition code.


Asunto(s)
ADN , Factores de Transcripción , Factores de Transcripción/metabolismo , Secuencia de Bases , Sitios de Unión , ADN/química , Unión Proteica
2.
Brief Bioinform ; 21(4): 1151-1163, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31204430

RESUMEN

RNA structures are widely distributed across all life forms. The global conformation of these structures is defined by a variety of constituent structural units such as helices, hairpin loops, kissing-loop motifs and pseudoknots, which often behave in a modular way. Their ubiquitous distribution is associated with a variety of functions in biological processes. The location of these structures in the genomes of RNA viruses is often coordinated with specific processes in the viral life cycle, where the presence of the structure acts as a checkpoint for deciding the eventual fate of the process. These structures have been found to adopt complex conformations and exert their effects by interacting with ribosomes, multiple host translation factors and small RNA molecules like miRNA. A number of such RNA structures have also been shown to regulate translation in viruses at the level of initiation, elongation or termination. The role of various computational studies in the preliminary identification of such sequences and/or structures and subsequent functional analysis has not been fully appreciated. This review aims to summarize the processes in which viral RNA structures have been found to play an active role in translational regulation, their global conformational features and the bioinformatics/computational tools available for the identification and prediction of these structures.


Asunto(s)
Biología Computacional/métodos , Genoma Viral , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Viral/fisiología , Virus ARN/genética , ARN Viral/química
3.
Nucleic Acids Res ; 46(22): 11883-11897, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30395339

RESUMEN

Spatial and temporal expression of genes is essential for maintaining phenotype integrity. Transcription factors (TFs) modulate expression patterns by binding to specific DNA sequences in the genome. Along with the core binding motif, the flanking sequence context can play a role in DNA-TF recognition. Here, we employ high-throughput in vitro and in silico analyses to understand the influence of sequences flanking the cognate sites in binding of three most prevalent eukaryotic TF families (zinc finger, homeodomain and bZIP). In vitro binding preferences of each TF toward the entire DNA sequence space were correlated with a wide range of DNA structural parameters, including DNA flexibility. Results demonstrate that conformational plasticity of flanking regions modulates binding affinity of certain TF families. DNA duplex stability and minor groove width also play an important role in DNA-TF recognition but differ in how exactly they influence the binding in each specific case. Our analyses further reveal that the structural features of preferred flanking sequences are not universal, as similar DNA-binding folds can employ distinct DNA recognition modes.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , ADN/química , Proteínas de Homeodominio/química , Transcripción Genética , Dedos de Zinc/genética , Animales , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Sitios de Unión , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas
4.
Biophys J ; 115(7): 1180-1189, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30172386

RESUMEN

With almost no consensus promoter sequence in prokaryotes, recruitment of RNA polymerase (RNAP) to precise transcriptional start sites (TSSs) has remained an unsolved puzzle. Uncovering the underlying mechanism is critical for understanding the principle of gene regulation. We attempted to search the hidden code in ∼16,500 promoters of 12 prokaryotes representing two kingdoms in their structure and energetics. Twenty-eight fundamental parameters of DNA structure including backbone angles, basepair axis, and interbasepair and intrabasepair parameters were used, and information was extracted from x-ray crystallography data. Three parameters (solvation energy, hydrogen-bond energy, and stacking energy) were selected for creating energetics profiles using in-house programs. DNA of promoter regions was found to be inherently designed to undergo a change in every parameter undertaken for the study, in all prokaryotes. The change starts from some distance upstream of TSSs and continues past some distance from TSS, hence giving a signature state to promoter regions. These signature states might be the universal hidden codes recognized by RNAP. This observation was reiterated when randomly selected promoter sequences (with little sequence conservation) were subjected to structure generation; all developed into very similar three-dimensional structures quite distinct from those of conventional B-DNA and coding sequences. Fine structural details at important motifs (viz. -11, -35, and -75 positions relative to TSS) of promoters reveal novel to our knowledge and pointed insights for RNAP interaction at these locations; it could be correlated with how some particular structural changes at the -11 region may allow insertion of RNAP amino acids in interbasepair space as well as facilitate the flipping out of bases from the DNA duplex.


Asunto(s)
Modelos Genéticos , Células Procariotas/metabolismo , Regiones Promotoras Genéticas/genética , ADN Forma B/química , ADN Forma B/genética , ADN Forma B/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , Termodinámica , Sitio de Iniciación de la Transcripción
5.
Biochim Biophys Acta ; 1858(11): 2804-2817, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27521749

RESUMEN

Transmembrane (TM) helices in integral membrane proteins are primarily α-helical in structure. Here we analyze 1134 TM helices in 90 high resolution membrane proteins and find that apart from the widely prevalent α-helices, TM regions also contain stretches of 310 (3 to 8 residues) and π-helices (5 to 19 residues) with distinct sequence signatures. The various helix perturbations in TM regions comprise of helices with kinked geometry, as well as those with an interspersed 310/π-helical fragment and show high occurrence in a few membrane proteins. Proline is frequently present at sites of these perturbations, but it is neither a necessary nor a sufficient requirement. Helix perturbations are also conserved within a family of membrane proteins despite low sequence identity in the perturbed region. Furthermore, a perturbation influences the geometry of the TM helix, mediates inter-helical interactions within and across protein chains and avoids hydrophobic mismatch of the helix termini with the bilayer. An analysis of π-helices in the TM regions of the heme copper oxidase superfamily shows that interspersed π-helices can vary in length from 6 to 19 amino acids or be entirely absent, depending upon the protein function. The results presented here would be helpful for prediction of 310 and π-helices in TM regions and can assist the computational design of membrane proteins.


Asunto(s)
Hemoproteínas/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Oxidorreductasas/química , Prolina/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Bases de Datos de Proteínas , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Prolina/química , Dominios Proteicos , Estructura Secundaria de Proteína
6.
Plant Physiol ; 172(1): 372-88, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457124

RESUMEN

OsMADS1 controls rice (Oryza sativa) floral fate and organ development. Yet, its genome-wide targets and the mechanisms underlying its role as a transcription regulator controlling developmental gene expression are unknown. We identify 3112 gene-associated OsMADS1-bound sites in the floret genome. These occur in the vicinity of transcription start sites, within gene bodies, and in intergenic regions. Majority of the bound DNA contained CArG motif variants or, in several cases, only A-tracts. Sequences flanking the binding peak had a higher AT nucleotide content, implying that broader DNA structural features may define in planta binding. Sequences for binding by other transcription factor families like MYC, AP2/ERF, bZIP, etc. are enriched in OsMADS1-bound DNAs. Target genes implicated in transcription, chromatin remodeling, cellular processes, and hormone metabolism were enriched. Combining expression data from OsMADS1 knockdown florets with these DNA binding data, a snapshot of a gene regulatory network was deduced where targets, such as AP2/ERF and bHLH transcription factors and chromatin remodelers form nodes. We show that the expression status of these nodal factors can be altered by inducing the OsMADS1-GR fusion protein and present a model for a regulatory cascade where the direct targets of OsMADS1, OsbHLH108/SPT, OsERF034, and OsHSF24, in turn control genes such as OsMADS32 and OsYABBY5 This cascade, with other similar relationships, cumulatively contributes to floral organ development. Overall, OsMADS1 binds to several regulatory genes and, probably in combination with other factors, controls a gene regulatory network that ensures rice floret development.


Asunto(s)
ADN de Plantas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Secuencia de Bases , Sitios de Unión/genética , ADN de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Redes Reguladoras de Genes , Proteínas de Dominio MADS/metabolismo , Motivos de Nucleótidos/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Comput Aided Mol Des ; 31(2): 219-235, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28102461

RESUMEN

Comprehensive analyses of structural features of non-canonical base pairs within a nucleic acid double helix are limited by the availability of a small number of three dimensional structures. Therefore, a procedure for model building of double helices containing any given nucleotide sequence and base pairing information, either canonical or non-canonical, is seriously needed. Here we describe a program RNAHelix, which is an updated version of our widely used software, NUCGEN. The program can regenerate duplexes using the dinucleotide step and base pair orientation parameters for a given double helical DNA or RNA sequence with defined Watson-Crick or non-Watson-Crick base pairs. The original structure and the corresponding regenerated structure of double helices were found to be very close, as indicated by the small RMSD values between positions of the corresponding atoms. Structures of several usual and unusual double helices have been regenerated and compared with their original structures in terms of base pair RMSD, torsion angles and electrostatic potentials and very high agreements have been noted. RNAHelix can also be used to generate a structure with a sequence completely different from an experimentally determined one or to introduce single to multiple mutation, but with the same set of parameters and hence can also be an important tool in homology modeling and study of mutation induced structural changes.


Asunto(s)
Modelos Moleculares , Ácidos Nucleicos/química , Emparejamiento Base , Conformación de Ácido Nucleico , Electricidad Estática
8.
Biophys J ; 110(6): 1264-79, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27028637

RESUMEN

Exportin-t (Xpot) transports mature 5'- and 3'-end processed tRNA from the nucleus to the cytoplasm by associating with a small G-protein Ran (RAs-related nuclear protein), in the nucleus. The release of tRNA in cytoplasm involves RanGTP hydrolysis. Despite the availability of crystal structures of nuclear and cytosolic forms of Xpot, the molecular details regarding the sequential events leading to tRNA release and subsequent conformational changes occurring in Xpot remain unknown. We have performed a combination of classical all-atom and accelerated molecular dynamics simulations on a set of complexes involving Xpot to study a range of features including conformational flexibility of free and cargo-bound Xpot and functionally critical contacts between Xpot and its cargo. The systems investigated include free Xpot and its different complexes, bound either to Ran (GTP/GDP) or tRNA or both. This approach provided a statistically reliable estimate of structural dynamics of Xpot after cargo release. The mechanistic basis for Xpot opening after cargo release has been explained in terms of dynamic structural hinges, about which neighboring region could be displaced to facilitate the nuclear to cytosolic state transition. Post-RanGTP hydrolysis, a cascade of events including local conformational change in RanGTP and loss of critical contacts at Xpot/tRNA interface suggest factors responsible for eventual release of tRNA. The level of flexibility in different Xpot complexes varied depending on the arrangement of individual HEAT repeats. Current study provides one of the most comprehensive and robust analysis carried out on this protein using molecular dynamics schemes.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de ARN , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Proteínas de Transporte Nucleocitoplasmático/química , Análisis de Componente Principal , Unión Proteica , Estructura Secundaria de Proteína , ARN de Transferencia/química , Proteína de Unión al GTP ran/química , Proteína de Unión al GTP ran/metabolismo
9.
J Struct Biol ; 196(3): 414-425, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27637571

RESUMEN

PolyProline-II (PPII) helices are defined as a continuous stretch of a protein chain in which the constituent residues have backbone torsion angle (φ, ψ) values of (-75°, 145°) and take up an extended left handed helical conformation, without any intra-chain hydrogen bonds. They are found to occur quite frequently in protein structures, with their number exceeding that of π-helices, though it is considerably less than that of α-helices and ß-strands. A relatively new procedure, ASSP, for the identification of regular secondary structures using Cα trace identifies 3597 PPII-helices in 3582 protein chains, solved at resolution ⩽2.0Å. Taking advantage of this significantly expanded database of PPII-helices, we have analyzed their structural and functional roles as well as determined the amino acid propensity within and around them. Though Pro residues are highly preferred, their presence is not a mandatory requirement for the formation of PPII-helices, since ∼40% PPII-helices were found to contain no Pro residues. Aromatic amino acids are avoided within this helix, while Gly, Asn and Asp residues are preferred in the proximal flanking regions. The PPII-helices range from 3 to 13 residues in length with the average twist and rise being -121.2°±9.2° and 3.0ű0.1Å respectively. A majority (∼72%) of PPII-helices were found to occur in conjunction with α-helices and ß-strands, and serve as linkers as well. The analysis of various intra-helical non-bonded interactions revealed frequent presence of CH⋯O H-bonds. PPII-helices participate in maintaining the three-dimensional structure of proteins and are important constituents of binding motifs involved in various biological functions.


Asunto(s)
Pliegue de Proteína , Proteínas/química , Relación Estructura-Actividad , Secuencia de Aminoácidos/genética , Enlace de Hidrógeno , Modelos Moleculares , Péptidos/química , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas/metabolismo
10.
Proteins ; 84(3): 360-73, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26756917

RESUMEN

Human Guanine Monophosphate Synthetase (hGMPS) converts XMP to GMP, and acts as a bifunctional enzyme with N-terminal "glutaminase" (GAT) and C-terminal "synthetase" domain. The enzyme is identified as a potential target for anti-cancer and immunosuppressive therapies. GAT domain of enzyme plays central role in metabolism, and contains conserved catalytic residues Cys104, His190, and Glu192. MD simulation studies on GAT domain suggest that position of oxyanion in unliganded conformation is occupied by one conserved water molecule (W1), which also stabilizes that pocket. This position is occupied by a negatively charged atom of the substrate or ligand in ligand bound crystal structures. In fact, MD simulation study of Ser75 to Val indicates that W1 conserved water molecule is stabilized by Ser75, while Thr152, and His190 also act as anchor residues to maintain appropriate architecture of oxyanion pocket through water mediated H-bond interactions. Possibly, four conserved water molecules stabilize oxyanion hole in unliganded state, but they vacate these positions when the enzyme (hGMPS)-substrate complex is formed. Thus this study not only reveals functionally important role of conserved water molecules in GAT domain, but also highlights essential role of other non-catalytic residues such as Ser75 and Thr152 in this enzymatic domain. The results from this computational study could be of interest to experimental community and provide a testable hypothesis for experimental validation. Conserved sites of water molecules near and at oxyanion hole highlight structural importance of water molecules and suggest a rethink of the conventional definition of chemical geometry of inhibitor binding site.


Asunto(s)
Glutaminasa/química , Ligasas/química , Secuencias de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación de Dinámica Molecular , Agua/química
11.
Phys Chem Chem Phys ; 18(41): 28767-28780, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27722489

RESUMEN

Mechanical unfolding studies on Ribonucleic Acid (RNA) structures are a subject of tremendous interest as they shed light on the principles of higher order assembly of these structures. Pseudoknotting is one of the most elementary ways in which this higher order assembly is achieved as discrete secondary structural units in RNA are brought in close proximity to form a tertiary structure. Using steered molecular dynamics (SMD) simulations, we have studied the unfolding of five RNA pseudoknot structures that differ from each other either by base substitutions in helices or loops. Our SMD simulations reveal the manner in which a biologically functional RNA pseudoknot unfolds and the effect of changes in the primary structure on this unfolding pathway, providing necessary insights into the driving forces behind the functioning of these structures. We observed that an A → C mutation in the loop sequence makes the pseudoknot far more resistant against force induced disruption relative to its wild type structure. In contrast to this, a base-pair substitution GC → AU near the pseudoknot junction region renders it more vulnerable to this disruption. The quantitative estimation of differences in the unfolding paths was carried out using force extension curves, potential of mean force profiles, and the opening of different Watson-Crick and non-Watson-Crick interactions. The results provide a quantified view in which the unfolding paths of the small RNA structures can be used for investigating the programmability of RNA chains for designing RNA switches and aptamers as their biological folding and unfolding could be assessed and manipulated.


Asunto(s)
Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , ARN/química , Emparejamiento Base , Mutación
12.
Phys Chem Chem Phys ; 18(18): 12774-83, 2016 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-27102899

RESUMEN

The types of mutations induced by oxidatively damaged products of DNA are continuously in debate. For example, some biochemical studies have proposed that guanidinohydantoin (Gh) would induce exclusively G to C mutations, while other studies have predicted a mixture of various mutations including G to C, G to T and G to A. In addition to the nature of mutations, the exact reasons of these mutations are also not properly understood. It is suggested that Gh can easily isomerize to iminoallantoin (Ia) in a pH-dependent manner and the transition becomes complete at pH > 8. In order to understand Gh/Ia-induced mutations, we have here studied the role of the most stable tautomer of Ia in the R- and S-enantiomeric configurations in promoting mismatch base pair complexes in DNA by employing a density functional theoretical (DFT) approach. It is found that Ia can have 39 different possible tautomeric forms each in the R- and S-enantiomeric configurations, out of which the most stable tautomer would involve the deprotonation of the N1 atom and protonation of the N3 atom. The most stable tautomer of Ia can adopt three different rotameric conformations (Ia1, Ia2, and Ia3) of comparable stabilities. It is further revealed that these rotamers of Ia can interact with different bases of DNA in 88 different possible ways. However, the interaction of G with Ia3 in both the anti- and syn-conformations would be the most stable. It is further revealed that the base pairing patterns, binding energies and electronic environments of anti-Ia3:G and G:T complexes are similar. In addition to this, it is also found that the binding patterns and energies of Gh1:G and Ia3:G complexes are similar. Based on these results, it is proposed that under physiological conditions, Gh1 may be responsible for the observed G to C mutations in DNA, while in an acidic environment Ia3 may be responsible for the same mutations. This study has led to a solid foundation for further high resolution structural studies to completely unravel Ia-induced mutagenicity in DNA.


Asunto(s)
Alantoína/análogos & derivados , ADN/química , ADN/genética , Mutación Puntual , Disparidad de Par Base , Emparejamiento Base , Guanidinas/química , Hidantoínas/química , Modelos Moleculares , Conformación Molecular , Estereoisomerismo
13.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 5): 1077-86, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25945573

RESUMEN

Secondary-structure elements (SSEs) play an important role in the folding of proteins. Identification of SSEs in proteins is a common problem in structural biology. A new method, ASSP (Assignment of Secondary Structure in Proteins), using only the path traversed by the C(α) atoms has been developed. The algorithm is based on the premise that the protein structure can be divided into continuous or uniform stretches, which can be defined in terms of helical parameters, and depending on their values the stretches can be classified into different SSEs, namely α-helices, 310-helices, π-helices, extended ß-strands and polyproline II (PPII) and other left-handed helices. The methodology was validated using an unbiased clustering of these parameters for a protein data set consisting of 1008 protein chains, which suggested that there are seven well defined clusters associated with different SSEs. Apart from α-helices and extended ß-strands, 310-helices and π-helices were also found to occur in substantial numbers. ASSP was able to discriminate non-α-helical segments from flanking α-helices, which were often identified as part of α-helices by other algorithms. ASSP can also lead to the identification of novel SSEs. It is believed that ASSP could provide a better understanding of the finer nuances of protein secondary structure and could make an important contribution to the better understanding of comparatively less frequently occurring structural motifs. At the same time, it can contribute to the identification of novel SSEs. A standalone version of the program for the Linux as well as the Windows operating systems is freely downloadable and a web-server version is also available at http://nucleix.mbu.iisc.ernet.in/assp/index.php.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Estructura Secundaria de Proteína , Proteínas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Bases de Datos de Proteínas , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Programas Informáticos
14.
Biopolymers ; 103(3): 134-47, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25257334

RESUMEN

Understanding dinucleotide sequence directed structures of nuleic acids and their variability from experimental observation remained ineffective due to unavailability of statistically meaningful data. We have attempted to understand this from energy scan along twist, roll, and slide degrees of freedom which are mostly dependent on dinucleotide sequence using ab initio density functional theory. We have carried out stacking energy analysis in these dinucleotide parameter phase space for all ten unique dinucleotide steps in DNA and RNA using DFT-D by ωB97X-D/6-31G(2d,2p), which appears to satisfactorily explain conformational preferences for AU/AU step in our recent study. We show that values of roll, slide, and twist of most of the dinucleotide sequences in crystal structures fall in the low energy region. The minimum energy regions with large twist values are associated with the roll and slide values of B-DNA, whereas, smaller twist values correspond to higher stability to RNA and A-DNA like conformations. Incorporation of solvent effect by CPCM method could explain the preference shown by some sequences to occur in B-DNA or A-DNA conformations. Conformational preference of BII sub-state in B-DNA is preferentially displayed mainly by pyrimidine-purine steps and partly by purine-purine steps. The purine-pyrimidine steps show largest effect of 5-methyl group of thymine in stacking energy and the introduction of solvent reduces this effect significantly. These predicted structures and variabilities can explain the effect of sequence on DNA and RNA functionality.


Asunto(s)
ADN/química , Nucleótidos/química , ARN/química , Emparejamiento Base , Conformación de Ácido Nucleico , Termodinámica
15.
Proteins ; 82(12): 3420-36, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25257385

RESUMEN

α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins.


Asunto(s)
Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Modelos Biológicos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Biología Computacional , Secuencia Conservada , Bases de Datos de Proteínas , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Validación de Programas de Computación , Terminología como Asunto
16.
Biopolymers ; 101(1): 107-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23722519

RESUMEN

Double helical structures of DNA and RNA are mostly determined by base pair stacking interactions, which give them the base sequence-directed features, such as small roll values for the purine-pyrimidine steps. Earlier attempts to characterize stacking interactions were mostly restricted to calculations on fiber diffraction geometries or optimized structure using ab initio calculations lacking variation in geometry to comment on rather unusual large roll values observed in AU/AU base pair step in crystal structures of RNA double helices. We have generated stacking energy hyperspace by modeling geometries with variations along the important degrees of freedom, roll, and slide, which were chosen via statistical analysis as maximally sequence dependent. Corresponding energy contours were constructed by several quantum chemical methods including dispersion corrections. This analysis established the most suitable methods for stacked base pair systems despite the limitation imparted by number of atom in a base pair step to employ very high level of theory. All the methods predict negative roll value and near-zero slide to be most favorable for the purine-pyrimidine steps, in agreement with Calladine's steric clash based rule. Successive base pairs in RNA are always linked by sugar-phosphate backbone with C3'-endo sugars and this demands C1'-C1' distance of about 5.4 Å along the chains. Consideration of an energy penalty term for deviation of C1'-C1' distance from the mean value, to the recent DFT-D functionals, specifically ωB97X-D appears to predict reliable energy contour for AU/AU step. Such distance-based penalty improves energy contours for the other purine-pyrimidine sequences also. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 107-120, 2014.


Asunto(s)
Emparejamiento Base , Conformación de Ácido Nucleico , Secuencia de Bases , Carbohidratos , ADN/química , ARN/química
17.
Nat Commun ; 14(1): 4179, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443151

RESUMEN

Human nuclear receptors (NRs) are a superfamily of ligand-responsive transcription factors that have central roles in cellular function. Their malfunction is linked to numerous diseases, and the ability to modulate their activity with synthetic ligands has yielded 16% of all FDA-approved drugs. NRs regulate distinct gene networks, however they often function from genomic sites that lack known binding motifs. Here, to annotate genomic binding sites of known and unexamined NRs more accurately, we use high-throughput SELEX to comprehensively map DNA binding site preferences of all full-length human NRs, in complex with their ligands. Furthermore, to identify non-obvious binding sites buried in DNA-protein interactomes, we develop MinSeq Find, a search algorithm based on the MinTerm concept from electrical engineering and digital systems design. The resulting MinTerm sequence set (MinSeqs) reveal a constellation of binding sites that more effectively annotate NR-binding profiles in cells. MinSeqs also unmask binding sites created or disrupted by 52,106 single-nucleotide polymorphisms associated with human diseases. By implicating druggable NRs as hidden drivers of multiple human diseases, our results not only reveal new biological roles of NRs, but they also provide a resource for drug-repurposing and precision medicine.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Factores de Transcripción , Humanos , Ligandos , Receptores Citoplasmáticos y Nucleares/genética , Sitios de Unión/genética , ADN/metabolismo
18.
Plant Physiol ; 156(3): 1300-15, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21531900

RESUMEN

The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.


Asunto(s)
Arabidopsis/genética , ADN de Plantas/genética , Genoma de Planta/genética , Oryza/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Intrones/genética , Familia de Multigenes/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Programas Informáticos , Termodinámica , Sitio de Iniciación de la Transcripción
19.
RSC Adv ; 12(19): 11853-11865, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35481095

RESUMEN

A large number of bacteria have been found to govern virulence and heat shock responses using temperature sensing RNAs known as RNA thermometers (RNATs). They repress translation initiation by base pairing to the Shine-Dalgarno (SD) sequence at low temperature. Increasing the temperature induces the RNA duplex to unfold and expose the SD sequence for translation. A prime example is the ROSE thermometer module known to regulate the production of the ROSE heat shock protein in Bradyrhizobium japonicum. The unfolding of a 29-nucleotide long MicroROSE RNA element which forms a critical component encompassing the SD sequence, and three mutants that differ from it by deletion of a guanine nucleotide or mutations near the SD and stem regions have been studied using high temperature molecular dynamics simulations. The simulations reveal the progressive manner in which a biologically functional RNA thermometer unfolds. Our simulations reveal that deletion of the highly conserved G10 residue, opposite to the SD region leads to the formation of a stable RNA helix that has lost its thermosensing ability. Mutations of bases A5 → U5 and U25 → A25 near the stem increase the thermosensing ability due to the allosteric effect which leads to a global destabilization effect on the structure. The temperature-dependant regulation of this thermometer has been investigated by estimation of differences in the unfolding paths by calculating individual residue fluctuation, stacking energy, the contact map plot and the lifetime dynamics plot of non-Watson-Crick hydrogen bonds at three different temperatures. Results reveal that partial unfolding at higher temperature starts from the hairpin tetra loop end and terminates at the stem region through the SD associated region. Two canonical hydrogen bonds between U9-A22 and four non-canonical hydrogen bonds between G10-G21 and U6-U24 around the internal loop play an important role in partial melting of the RNA helix. These results demonstrate how small alterations in RNA structure can regulate gene expression and illuminate the molecular basis of the function of an important bacterial regulatory motif.

20.
Immunology ; 132(1): 39-48, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20722758

RESUMEN

Osteopontin (OPN) is a glycophosphoprotein with multiple intracellular and extracellular functions. In vitro, OPN enhances migration of mouse neutrophils and macrophages. In cancer, extracellular OPN facilitates migration of cancer cells via its RGD sequence. The present study was designed to investigate whether osteopontin is responsible for neutrophil and macrophage infiltration in human cancer and in particular in glioblastoma. We found that in vitro mouse neutrophil migration was RGD-dependent. In silico, we found that the OPN gene was one of the 5% most highly expressed genes in 20 out of 35 cancer microarray data sets in comparison with normal tissue in at least 30% of cancer patients. In some types of cancer, such as ovarian cancer, lung cancer and melanoma, the OPN gene was one of those with the highest expression levels in at least 90% of cancer patients. In glioblastoma, the most invasive type of brain tumours/glioma, but not in lower grades of glioma it was one of the 5% highest expressed genes in 90% of patients. In situ, we found increased protein levels of OPN in human glioblastoma versus normal human brain confirming in silico results. OPN protein expression was co-localized with neutrophils and macrophages. In conclusion, OPN in tumours not only induces migration of cancer cells but also of leucocytes.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/genética , Glioblastoma/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología , Osteopontina/genética , Osteopontina/inmunología , Regulación hacia Arriba , Animales , Movimiento Celular/inmunología , Eliminación de Gen , Glioblastoma/patología , Humanos , Inmunohistoquímica , Ratones , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Osteopontina/biosíntesis , Osteopontina/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA