Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 25(16): 4075-90, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27357374

RESUMEN

Understanding how midgut microbial communities of field-collected mosquitoes interact with pathogens is critical for controlling vector infection and disease. We used 16S rRNA and internal transcribed spacer sequencing to characterize the midgut bacterial and fungal communities of adult females of Aedes triseriatus and Aedes japonicus collected as pupae in tree holes, plastic bins and waste tires and their response to La Crosse virus (LACV) infection. For both mosquito species and across all habitat and virus treatments, a total of 62 bacterial operational taxonomic units (OTUs) from six phyla and 21 fungal OTUs from two phyla were identified. The majority of bacterial (92%) and fungal (71%) OTUs were shared between the mosquito species; however, several OTUs were unique to each species. Bacterial and fungal communities of individuals that took either infectious or noninfectious bloodmeals were less diverse and more homogeneous compared to those of newly emerged adults. Interestingly, LACV-infected A. triseriatus and A. japonicus had higher bacterial richness and lower fungal richness compared to individuals that took a noninfectious bloodmeal, suggesting that viral infection was associated with an increase in bacterial OTUs and a decrease in fungal OTUs. For both mosquito species, several OTUs were identified that had both high fidelity and specificity to mosquito midguts that were infected with LACV. Overall, these findings demonstrate that bacterial and fungal communities that reside in mosquito midguts respond to host diet and viral infection and could play a role in modulating vector susceptibility to LACV.


Asunto(s)
Aedes/microbiología , Aedes/virología , Virus La Crosse , Microbiota , Animales , Bacterias/clasificación , ADN Espaciador Ribosómico/genética , Femenino , Hongos/clasificación , Interacciones Huésped-Patógeno , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , ARN Ribosómico 16S/genética
2.
J Med Entomol ; 52(3): 452-60, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26334821

RESUMEN

Ochlerotatus triseriatus (Say), the primary vector of La Crosse virus (LAC), develops in a variety of natural and artificial aquatic containers where it often co-occurs with larvae of other mosquito species. We conducted a field study at two woodlots (South Farms and Trelease Woods) in Urbana, IL, to examine how container type influences vector abundance, body size, and susceptibility to LAC. Mosquito pupae were collected from tree holes, plastic bins, and waste tires, and eclosing adults were identified to species morphologically. Oc. triseriatus and Ochlerotatus japonicus (Theobald) females were orally challenged with LAC and midgut infection rate, disseminated infection rate, and body titer were determined by reverse-transcriptase real-time PCR. Oc. triseriatus was the dominant species collected in tree holes while Oc. japonicus and Culex restuans (Theobald) were mostly dominant in artificial containers. Female Oc. triseriatus and Oc. japonicus collected from plastic bins were significantly larger than those collected from tree holes or waste tires. Oc. japonicus females from South Farms were also significantly larger than those from Trelease Woods. Oc. triseriatus females collected from plastic bins and waste tires were significantly more susceptible to LAC infection relative to females collected from tree holes. In addition, Oc. triseriatus females from waste tires had significantly higher LAC titer relative to Oc. triseriatus from tree holes. For each container type and study site, wing length was not correlated to infection or dissemination rates. These findings suggest that the container type in which Oc.triseriatus develop may contribute to the spatial and temporal dynamics of LAC transmission.


Asunto(s)
Insectos Vectores/fisiología , Insectos Vectores/virología , Virus La Crosse/fisiología , Ochlerotatus/fisiología , Ochlerotatus/virología , Animales , Tamaño Corporal , Encefalitis de California/transmisión , Encefalitis de California/virología , Femenino , Illinois , Insectos Vectores/crecimiento & desarrollo , Larva/fisiología , Larva/virología , Masculino , Ochlerotatus/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , Densidad de Población , Especificidad de la Especie
3.
Parasitol Res ; 113(8): 2879-86, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24853538

RESUMEN

Although exposure of mosquito larvae to agricultural chemicals such as herbicides is common and widespread, our understanding of how these chemicals affect mosquito ecology and behavior is limited. This study investigated how an environmentally relevant concentration of two herbicides, atrazine and glyphosate, affects mosquito life history traits. One hundred and fifty (150) first instar Aedes (Stegomyia) aegypti (L.) or Aedes (Stegomyia) albopictus (Skuse) larvae were reared in 1.6 L of live oak leaf (Quercus virginiana) infusion in the presence (5 mg/L) or absence (0 mg/L) of atrazine or glyphosate. The containers were monitored daily to determine the emergence rates, sex ratio, male and female emergence times, and female body size. Emergence rates of A. aegypti from atrazine treatment were significantly higher relative to either glyphosate or control treatments (A. aegypti: atrazine = 93 ± 6% (±95% CI), glyphosate = 82 ± 5%, control = 78 ± 5%), while emergence rates of A. albopictus in atrazine treatments were significantly higher than in glyphosate treatments but not in controls (A. albopictus: atrazine = 84 ± 5 %, glyphosate = 76 ± 4%, control = 78 ± 4%). For both mosquito species, a sex ratio distortion with male bias was observed in control and glyphosate treatments, but not in atrazine treatments (A. aegypti: atrazine = 0.90 ± 0.17 (±SE), glyphosate = 1.63 ± 0.21, control = 1.69 ± 0.26; A. albopictus: atrazine = 1.09 ± 0.08, glyphosate = 1.88 ± 0.12, control = 1.37 ± 0.11). Emergence times for both sexes of the two mosquito species were significantly longer in atrazine treatments compared to glyphosate or control treatments (A. aegypti: females: atrazine = 11.20 ± 0.50 (days ± 95 % CI), glyphosate = 9.71 ± 0.23, control = 9.87 ± 0.21; males: atrazine = 9.46 ± 0.27, glyphosate = 8.80 ± 0.25, control = 8.85 ± 0.24; A. albopictus: females: atrazine = 17.40 ± 1.70, glyphosate = 12.4 ± 0.40, control = 12.5 ± 0.30; males: atrazine = 12.96 ± 0.41, glyphosate = 10.48 ± 0.24, control = 10.64 ± 0.37). For A. albopictus but not A. aegypti, adult females from atrazine treatment had significantly longer wing lengths compared to those from glyphosate or control treatments (A. albopictus: atrazine = 3.06 ± 0.07 (mm ± 95% CI), glyphosate = 2.80 ± 0.07, control = 2.83 ± 0.06). These results demonstrate the potential for atrazine, a widely used herbicide, to influence epidemiologically relevant life history traits of mosquitoes.


Asunto(s)
Aedes/efectos de los fármacos , Atrazina/farmacología , Glicina/análogos & derivados , Herbicidas/farmacología , Aedes/crecimiento & desarrollo , Animales , Tamaño Corporal , Femenino , Glicina/farmacología , Larva/efectos de los fármacos , Masculino , Razón de Masculinidad , Glifosato
4.
R Soc Open Sci ; 5(9): 180623, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30839703

RESUMEN

Understanding characteristic differences between host-associated and free-living opportunistic pathogens can provide insight into the fundamental requirements for success after dispersal to the host environment, and more generally into the ecological and evolutionary processes by which populations respond to simultaneous selection on complex interacting traits. We examined how cystic fibrosis (CF)-associated and environmental isolates of the opportunistic pathogen Pseudomonas aeruginosa differ in the production of an ecologically important class of proteinaceous toxins known as bacteriocins, and how overall competitive ability depends on the production of and resistance to these bacteriocins. We determined bacteriocin gene content in a diverse collection of environmental and CF isolates and measured bacteriocin-mediated inhibition, resistance and the outcome of competition in a shared environment between all possible pairs of these isolates at 25°C and 37°C. Although CF isolates encoded significantly more bacteriocin genes, our phenotypic assays suggest that they have diminished bacteriocin-mediated killing and resistance capabilities relative to environmental isolates, regardless of incubation temperature. Notably, however, although bacteriocin killing and resistance profiles significantly predicted head-to-head competitive outcomes, CF and environmental isolates did not differ significantly in their competitive ability. This suggests that the contribution of bacteriocins to competitive ability involves selection on other traits that may be pleiotropically linked to interference competition mediated by bacteriocins.

5.
J Med Entomol ; 53(6): 1415-1421, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27605372

RESUMEN

Invasive mosquito species can increase the transmission risk of native mosquito-borne diseases by acting as novel vectors. In this study, we examined the susceptibility of three exotic invasive mosquito species Aedes aegypti (L.), Ae. albopictus (Skuse), and Ochlerotatus japonicus (Theobald) to La Crosse virus (LACV) relative to the native primary vector Ochlerotatus triseriatus (Say). Adult females of the four mosquito species were orally challenged with LACV; incubated for 3, 5, 7, 9, or 11 d; and their midgut infection rates, dissemination rates, and effective vector competence were determined. Overall, Oc. japonicus (2.92) had the highest effective vector competence values, followed by Ae. albopictus (1.55), Ae. aegypti (0.88), and Oc. triseriatus (0.64). In addition, we assessed the relationship between mosquito size and LACV susceptibility for field-collected Oc. triseriatus and Oc. japonicus We hypothesized that smaller adults would be more susceptible to LACV; however, our results did not support this hypothesis. Infected Oc. triseriatus tended to be larger than exposed but uninfected females, while infected and uninfected Oc. japonicus were similarly sized. These findings suggest that Oc. japonicus, Ae. albopictus, and Ae. aegypti have significant potential to transmit LACV and more research is needed to uncover their potential role in LACV epidemiology.


Asunto(s)
Aedes/virología , Insectos Vectores/virología , Virus La Crosse/fisiología , Ochlerotatus/virología , Animales , Femenino , Especies Introducidas , Estados Unidos
6.
Environ Entomol ; 44(5): 1308-15, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26314023

RESUMEN

We examined how leaf litter of alien invasive honeysuckle (Lonicera maackii Rupr.) either alone or in combination with leaf litter of one of two native tree species, sugar maple (Acer saccharum Marshall) and northern red oak (Quercus rubra L.), affects the ecology of Culex restuans Theobald, Ochlerotatus triseriatus Say, and Ochlerotatus japonicus Theobald. Experimental mesocosms containing single species litter or a mixture of honeysuckle and one of two native tree species litter were established at South Farms and Trelease Woods study sites in Urbana, IL, and examined for their effect on 1) oviposition site selection by the three mosquito species, and 2) adult production and body size of Oc. triseriatus and Oc. japonicus. There were no significant effects of study site and leaf treatment on Oc. japonicus and Oc. triseriatus oviposition preference and adult production. In contrast, significantly more Cx. restuans eggs rafts were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Significantly larger adult females of Oc. japonicus and Oc. triseriatus were collected at South Farms relative to Trelease Woods and in honeysuckle litter relative to native tree species litter. Combining honeysuckle litter with native tree species litter had additive effects on Cx. restuans oviposition preference and Oc. japonicus and Oc. triseriatus body size, with the exception of honeysuckle and northern red oak litter combination, which had antagonistic effects on Oc. triseriatus body size. We conclude that input of honeysuckle litter into container aquatic habitats may alter the life history traits of vector mosquito species.


Asunto(s)
Culex/fisiología , Especies Introducidas , Lonicera , Ochlerotatus/fisiología , Acer , Animales , Tamaño Corporal , Culex/crecimiento & desarrollo , Femenino , Illinois , Insectos Vectores , Ochlerotatus/crecimiento & desarrollo , Oviposición/fisiología , Hojas de la Planta , Quercus
7.
Acta Trop ; 130: 71-5, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24463260

RESUMEN

Mixed viral infections are ubiquitous in natural populations and may have significant but unpredictable biological and epidemiological consequences. These infections may be acquired simultaneously (coinfection) or result from two single infections at different time intervals (superinfection). This study investigated the effect of mixed infections of two mosquito-borne viruses, Sindbis (SINV) and La Crosse (LACV), on the replication of each virus in vertebrate baby hamster kidney (BHK) and invertebrate Aedes albopictus (C6/36) cell lines. SINV and LACV were inoculated onto confluent monolayers of each cell type either singly, simultaneously, or with a 2-h delay between single inoculations and titers for each virus were quantified by qRT-PCR. The titers for both viruses were significantly higher in BHK compared to C6/36 cells. Mixed infections suppressed replication of both viruses in BHK cells except for one superinfection treatment where inoculation of SINV ahead of LACV did not result in a reduction in SINV titer relative to single infection treatment. In C6/36 cells mixed infections had no effect on LACV replication, while coinfection enhanced SINV replication. These results demonstrate the potential for mixed viral infections to modify arbovirus transmission and pathogenesis.


Asunto(s)
Infecciones por Alphavirus/virología , Coinfección/virología , Encefalitis de California/virología , Virus La Crosse/fisiología , Virus Sindbis/fisiología , Replicación Viral , Aedes/virología , Animales , Línea Celular , Cricetinae , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA