Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(1): 208-220.e20, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551265

RESUMEN

Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.


Asunto(s)
ADN Bacteriano/metabolismo , Transposasas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , División del ADN , Elementos Transponibles de ADN/genética , ADN Bacteriano/química , Farmacorresistencia Bacteriana , Enterococcus faecalis/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Transposasas/antagonistas & inhibidores , Transposasas/química , Transposasas/genética
2.
Genes Dev ; 33(1-2): 90-102, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30567997

RESUMEN

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica/genética , ARN Interferente Pequeño/genética , Secuencias de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/genética , Genoma de los Helmintos/genética , Unión Proteica , Proteómica , ARN Interferente Pequeño/biosíntesis
4.
Nucleic Acids Res ; 50(5): 2807-2825, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35188569

RESUMEN

The Sleeping Beauty (SB) transposon system is a popular tool for genome engineering, but random integration into the genome carries a certain genotoxic risk in therapeutic applications. Here we investigate the role of amino acids H187, P247 and K248 in target site selection of the SB transposase. Structural modeling implicates these three amino acids located in positions analogous to amino acids with established functions in target site selection in retroviral integrases and transposases. Saturation mutagenesis of these residues in the SB transposase yielded variants with altered target site selection properties. Transposon integration profiling of several mutants reveals increased specificity of integrations into palindromic AT repeat target sequences in genomic regions characterized by high DNA bendability. The H187V and K248R mutants redirect integrations away from exons, transcriptional regulatory elements and nucleosomal DNA in the human genome, suggesting enhanced safety and thus utility of these SB variants in gene therapy applications.


Asunto(s)
Transposasas , Aminoácidos/genética , Elementos Transponibles de ADN/genética , Humanos , Integrasas/metabolismo , Ingeniería de Proteínas , Transposasas/genética , Transposasas/metabolismo
5.
Nucleic Acids Res ; 50(6): 3155-3168, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35323968

RESUMEN

Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.


Asunto(s)
Bacterias , Bacteriófagos , Bacterias/genética , Bacteriófagos/genética , Elementos Transponibles de ADN/genética , Farmacorresistencia Microbiana/genética , Transferencia de Gen Horizontal , Filogenia , Recombinasas/genética
6.
Cell ; 132(2): 208-20, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18243097

RESUMEN

The smallest known DNA transposases are those from the IS200/IS605 family. Here we show how the interplay of protein and DNA activates TnpA, the Helicobacter pylori IS608 transposase, for catalysis. First, transposon end binding causes a conformational change that aligns catalytically important protein residues within the active site. Subsequent precise cleavage at the left and right ends, the steps that liberate the transposon from its donor site, does not involve a site-specific DNA-binding domain. Rather, cleavage site recognition occurs by complementary base pairing with a TnpA-bound subterminal transposon DNA segment. Thus, the enzyme active site is constructed from elements of both protein and DNA, reminiscent of the interdependence of protein and RNA in the ribosome. Our structural results explain why the transposon ends are asymmetric and how the transposon selects a target site for integration, and they allow us to propose a molecular model for the entire transposition reaction.


Asunto(s)
Elementos Transponibles de ADN/genética , Transposasas/metabolismo , Alanina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Catálisis , Cristalización , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Dimerización , Activación Enzimática , Helicobacter pylori/enzimología , Enlace de Hidrógeno , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Transposasas/química , Transposasas/genética , Tirosina/genética , Tirosina/metabolismo
7.
Mol Syst Biol ; 17(5): e9880, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34018328

RESUMEN

Mobile genetic elements (MGEs) sequester and mobilize antibiotic resistance genes across bacterial genomes. Efficient and reliable identification of such elements is necessary to follow resistance spreading. However, automated tools for MGE identification are missing. Tyrosine recombinase (YR) proteins drive MGE mobilization and could provide markers for MGE detection, but they constitute a diverse family also involved in housekeeping functions. Here, we conducted a comprehensive survey of YRs from bacterial, archaeal, and phage genomes and developed a sequence-based classification system that dissects the characteristics of MGE-borne YRs. We revealed that MGE-related YRs evolved from non-mobile YRs by acquisition of a regulatory arm-binding domain that is essential for their mobility function. Based on these results, we further identified numerous unknown MGEs. This work provides a resource for comparative analysis and functional annotation of YRs and aids the development of computational tools for MGE annotation. Additionally, we reveal how YRs adapted to drive gene transfer across species and provide a tool to better characterize antibiotic resistance dissemination.


Asunto(s)
Archaea/genética , Bacterias/genética , Hongos/genética , Recombinasas/metabolismo , Análisis de Secuencia de Proteína/métodos , Archaea/enzimología , Bacterias/enzimología , Farmacorresistencia Microbiana , Evolución Molecular , Hongos/enzimología , Secuencias Repetitivas Esparcidas , Anotación de Secuencia Molecular , Biología de Sistemas
8.
Nucleic Acids Res ; 48(1): 316-331, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31777924

RESUMEN

The Sleeping Beauty (SB) transposon is an advanced tool for genetic engineering and a useful model to investigate cut-and-paste DNA transposition in vertebrate cells. Here, we identify novel SB transposase mutants that display efficient and canonical excision but practically unmeasurable genomic re-integration. Based on phylogenetic analyses, we establish compensating amino acid replacements that fully rescue the integration defect of these mutants, suggesting epistasis between these amino acid residues. We further show that the transposons excised by the exc+/int- transposase mutants form extrachromosomal circles that cannot undergo a further round of transposition, thereby representing dead-end products of the excision reaction. Finally, we demonstrate the utility of the exc+/int- transposase in cassette removal for the generation of reprogramming factor-free induced pluripotent stem cells. Lack of genomic integration and formation of transposon circles following excision is reminiscent of signal sequence removal during V(D)J recombination, and implies that cut-and-paste DNA transposition can be converted to a unidirectional process by a single amino acid change.


Asunto(s)
Reprogramación Celular , Elementos Transponibles de ADN , Células Madre Pluripotentes Inducidas/metabolismo , Transposasas/genética , Sustitución de Aminoácidos , Animales , Epistasis Genética , Ingeniería Genética/métodos , Células HeLa , Células Hep G2 , Humanos , Células Madre Pluripotentes Inducidas/citología , Ratones , Mutación , Transposasas/metabolismo
9.
Chembiochem ; 22(5): 834-838, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33085143

RESUMEN

Phosphoprotein phosphatase-1 (PP1) is a key player in the regulation of phospho-serine (pSer) and phospho-threonine (pThr) dephosphorylation and is involved in a large fraction of cellular signaling pathways. Aberrant activity of PP1 has been linked to many diseases, including cancer and heart failure. Besides a well-established activity control by regulatory proteins, an inhibitory function for phosphorylation (p) of a Thr residue in the C-terminal intrinsically disordered tail of PP1 has been demonstrated. The associated phenotype of cell-cycle arrest was repeatedly proposed to be due to autoinhibition of PP1 through either conformational changes or substrate competition. Here, we use PP1 variants created by mutations and protein semisynthesis to differentiate between these hypotheses. Our data support the hypothesis that pThr exerts its inhibitory function by mediating protein complex formation rather than by a direct mechanism of structural changes or substrate competition.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Serina/química , Treonina/química , Humanos , Fosforilación , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteína Fosfatasa 1/genética
10.
Nature ; 575(7783): 447-448, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31745352
11.
Nucleic Acids Res ; 46(8): 4152-4163, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29635476

RESUMEN

Transposable elements are efficient DNA carriers and thus important tools for transgenesis and insertional mutagenesis. However, their poor target sequence specificity constitutes an important limitation for site-directed applications. The insertion sequence IS608 from Helicobacter pylori recognizes a specific tetranucleotide sequence by base pairing, and its target choice can be re-programmed by changes in the transposon DNA. Here, we present the crystal structure of the IS608 target capture complex in an active conformation, providing a complete picture of the molecular interactions between transposon and target DNA prior to integration. Based on this, we engineered IS608 variants to direct their integration specifically to various 12/17-nt long target sites by extending the base pair interaction network between the transposon and the target DNA. We demonstrate in vitro that the engineered transposons efficiently select their intended target sites. Our data further elucidate how the distinct secondary structure of the single-stranded transposon intermediate prevents extended target specificity in the wild-type transposon, allowing it to move between diverse genomic sites. Our strategy enables efficient targeting of unique DNA sequences with high specificity in an easily programmable manner, opening possibilities for the use of the IS608 system for site-specific gene insertions.


Asunto(s)
Elementos Transponibles de ADN , ADN Bacteriano/química , Emparejamiento Base , Secuencia de Bases , Ingeniería Genética , Helicobacter pylori/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Transposasas/química , Transposasas/metabolismo
12.
Mol Microbiol ; 107(5): 639-658, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29271522

RESUMEN

Rapid spread of resistance to vancomycin has generated difficult to treat bacterial pathogens worldwide. Though vancomycin resistance is often conferred by the conjugative transposon Tn1549, it is yet unclear whether Tn1549 moves actively between bacteria. Here we demonstrate, through development of an in vivo assay system, that a mini-Tn1549 can transpose in E. coli away from its natural Gram-positive host. We find the transposon-encoded INT enzyme and its catalytic tyrosine Y380 to be essential for transposition. A second Tn1549 protein, XIS is important for efficient and accurate transposition. We further show that DNA flanking the left transposon end is critical for excision, with changes to nucleotides 7 and 9 impairing movement. These mutations could be partially compensated for by changing the final nucleotide of the right transposon end, implying concerted excision of the two ends. With changes in these essential DNA sequences, or without XIS, a large amount of flanking DNA transposes with Tn1549. This rescues mobility and allows the transposon to capture and transfer flanking genomic DNA. We further identify the transposon integration target sites as TTTT-N6-AAAA. Overall, our results provide molecular insights into conjugative transposition and the adaptability of Tn1549 for efficient antibiotic resistance transfer.


Asunto(s)
Conjugación Genética/genética , Elementos Transponibles de ADN/genética , Enterococcus faecalis/genética , Escherichia coli/genética , Resistencia a la Vancomicina/genética , Secuencia de Aminoácidos , Secuencia de Bases , Enterococcus faecalis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vectores Genéticos , Integrasas/metabolismo , Mutación , Tirosina/metabolismo
13.
Mol Ther ; 24(8): 1369-77, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27401040

RESUMEN

Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called "sectors", which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold.


Asunto(s)
Elementos Transponibles de ADN , Transposasas/genética , Transposasas/metabolismo , Proteínas Portadoras/metabolismo , Secuencia Conservada , Vectores Genéticos/genética , Recombinación Homóloga , Modelos Moleculares , Mutagénesis , Mutación , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Relación Estructura-Actividad , Transposasas/química
14.
Mol Cell ; 34(5): 612-9, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524540

RESUMEN

Target site choice is a complex and poorly understood aspect of DNA transposition despite its importance in rational transposon-mediated gene delivery. Though most transposons choose target sites essentially randomly or with some slight sequence or structural preferences, insertion sequence IS608 from Helicobacter pylori, which transposes using single-stranded DNA, always inserts just 3' of a TTAC tetranucleotide. Our results from studies on the IS608 transposition mechanism demonstrated that the transposase recognizes its target site by co-opting an internal segment of transposon DNA and utilizes it for specific recognition of the target sites through base-pairing. This suggested a way to redirect IS608 transposition to novel target sites. As we demonstrate here, we can now direct insertions in a predictable way into a variety of different chosen target sequences, both in vitro and in vivo.


Asunto(s)
Proteínas Bacterianas/fisiología , Elementos Transponibles de ADN/fisiología , ADN de Cadena Simple/química , Helicobacter pylori/genética , Modelos Genéticos , Transposasas/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Emparejamiento Base , Secuencia de Bases , Mutación Puntual , Transposasas/química , Transposasas/genética
15.
Nucleic Acids Res ; 42(22): 13525-33, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25398899

RESUMEN

The thermophilic fungus Chaetomium thermophilum holds great promise for structural biology. To increase the efficiency of its biochemical and structural characterization and to explore its thermophilic properties beyond those of individual proteins, we obtained transcriptomics and proteomics data, and integrated them with computational annotation methods and a multitude of biochemical experiments conducted by the structural biology community. We considerably improved the genome annotation of Chaetomium thermophilum and characterized the transcripts and expression of thousands of genes. We furthermore show that the composition and structure of the expressed proteome of Chaetomium thermophilum is similar to its mesophilic relatives. Data were deposited in a publicly available repository and provide a rich source to the structural biology community.


Asunto(s)
Chaetomium/genética , Genoma Fúngico , Anotación de Secuencia Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Intrones , Proteoma/metabolismo , Seudogenes , Transcriptoma
16.
Proc Natl Acad Sci U S A ; 110(50): 20140-5, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277848

RESUMEN

Although a variety of non-LTR retrotransposons of the L1 superfamily have been found in plant genomes over recent decades, their diversity, distribution, and evolution have yet to be analyzed in depth. Here, we perform comprehensive comparative and evolutionary analyses of L1 retrotransposons from 29 genomes of land plants covering a wide range of taxa. We identify numerous L1 elements in these genomes and detect a striking diversity of their domain composition. We show that all known land plant L1 retrotransposons can be grouped into five major families based on their phylogenetic relationships and domain composition. Moreover, we trace the putative evolution timeline that created the current variants and reveal that evolutionary events included losses and acquisitions of diverse putative RNA-binding domains and the acquisition of an Archaea-like ribonuclease H (RNH) domain. We also show that the latter RNH domain is autonomously active in vitro and speculate that retrotransposons may play a role in the horizontal transfer of RNH between plants, Archaea, and bacteria. The acquisition of an Archaea-like RNH domain by plant L1 retrotransposons negates the hypothesis that RNH domains in non-LTR retrotransposons have a single origin and provides evidence that acquisition happened at least twice. Together, our data indicate that the evolution of the investigated retrotransposons can be mainly characterized by repeated events of domain rearrangements and identify modular evolution as a major trend in the evolution of plant L1 retrotransposons.


Asunto(s)
Archaea/enzimología , Evolución Molecular , Genoma de Planta/genética , Plantas/genética , Retroelementos/genética , Ribonucleasa H/genética , Secuencia de Aminoácidos , Archaea/genética , Secuencia de Bases , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
17.
Nucleic Acids Res ; 41(22): 10542-55, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23982515

RESUMEN

Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,ß-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure.


Asunto(s)
Modelos Moleculares , Fosfatos/química , Pirofosfatasas/química , Biocatálisis , Cristalografía por Rayos X , Nucleótidos de Desoxiuracil/química , Nucleótidos de Desoxiuracil/metabolismo , Virus del Mono Mason-Pfizer/enzimología , Resonancia Magnética Nuclear Biomolecular , Isótopos de Fósforo , Conformación Proteica , Pirofosfatasas/metabolismo
18.
EMBO J ; 29(22): 3840-52, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-20890269

RESUMEN

Bacterial insertion sequences (ISs) from the IS200/IS605 family encode the smallest known DNA transposases and mobilize through single-stranded DNA transposition. Transposition by one particular family member, ISDra2 from Deinococcus radiodurans, is dramatically stimulated upon massive γ irradiation. We have determined the crystal structures of four ISDra2 transposase/IS end complexes; combined with in vivo activity assays and fluorescence anisotropy binding measurements, these have revealed the molecular basis of strand discrimination and transposase action. The structures also show that previously established structural rules of target site recognition that allow different specific sequences to be targeted are only partially conserved among family members. Furthermore, we have captured a fully assembled active site including the scissile phosphate bound by a divalent metal ion cofactor (Cd²(+)) that supports DNA cleavage. Finally, the observed active site rearrangements when the transposase binds a metal ion in which it is inactive provide a clear rationale for metal ion specificity.


Asunto(s)
ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Deinococcus/enzimología , Transposasas/química , Transposasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Elementos Transponibles de ADN , ADN Bacteriano/química , ADN de Cadena Simple/química , Deinococcus/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Alineación de Secuencia , Transposasas/genética , Zinc/metabolismo
19.
RNA ; 18(12): 2128-34, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23086923

RESUMEN

Piwi-interacting RNAs (piRNAs) are a gonad-specific class of small RNAs that associate with the Piwi clade of Argonaute proteins and play a key role in transposon silencing in animals. Since biogenesis of piRNAs is independent of the double-stranded RNA-processing enzyme Dicer, an alternative nuclease that can process single-stranded RNA transcripts has been long sought. A Phospholipase D-like protein, Zucchini, that is essential for piRNA processing has been proposed to be a nuclease acting in piRNA biogenesis. Here we describe the crystal structure of Zucchini from Drosophila melanogaster and show that it is very similar to the bacterial endonuclease, Nuc. The structure also reveals that homodimerization induces major conformational changes assembling the active site. The active site is situated on the dimer interface at the bottom of a narrow groove that can likely accommodate single-stranded nucleic acid substrates. Furthermore, biophysical analysis identifies protein segments essential for dimerization and provides insights into regulation of Zucchini's activity.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Endorribonucleasas/química , Endorribonucleasas/metabolismo , ARN Interferente Pequeño/biosíntesis , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Endorribonucleasas/genética , Ratones , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Datos de Secuencia Molecular , Fosfolipasa D/química , Fosfolipasa D/genética , Multimerización de Proteína , Homología de Secuencia de Aminoácido , Electricidad Estática
20.
Nucleic Acids Res ; 35(2): 495-505, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17169987

RESUMEN

The homotrimeric fusion protein nucleocapsid (NC)-dUTPase combines domains that participate in RNA/DNA folding, reverse transcription, and DNA repair in Mason-Pfizer monkey betaretrovirus infected cells. The structural organization of the fusion protein remained obscured by the N- and C-terminal flexible segments of dUTPase and the linker region connecting the two domains that are invisible in electron density maps. Small-angle X-ray scattering reveals that upon oligonucleotide binding the NC domains adopt the trimeric symmetry of dUTPase. High-resolution X-ray structures together with molecular modeling indicate that fusion with NC domains dramatically alters the conformation of the flexible C-terminus by perturbing the orientation of a critical beta-strand. Consequently, the C-terminal segment is capable of double backing upon the active site of its own monomer and stabilized by non-covalent interactions formed with the N-terminal segment. This co-folding of the dUTPase terminal segments, not observable in other homologous enzymes, is due to the presence of the fused NC domain. Structural and genomic advantages of fusing the NC domain to a shortened dUTPase in betaretroviruses and the possible physiological consequences are envisaged.


Asunto(s)
Virus del Mono Mason-Pfizer/enzimología , Proteínas de la Nucleocápside/química , Pirofosfatasas/química , Proteínas Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Virus del Mono Mason-Pfizer/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Proteínas de la Nucleocápside/genética , Poliproteínas/química , Pliegue de Proteína , Estructura Terciaria de Proteína , Pirofosfatasas/genética , Alineación de Secuencia , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA