Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502410

RESUMEN

Transient receptor potential melastatin 4 (TRPM4) plays an important role in many tissues, including pacemaker and conductive tissues of the heart, but much less is known about its electrophysiological role in ventricular myocytes. Our earlier results showed the lack of selectivity of 9-phenanthrol, so CBA ((4-chloro-2-(2-chlorophenoxy)acetamido) benzoic acid) was chosen as a new, potentially selective inhibitor. Goal: Our aim was to elucidate the effect and selectivity of CBA in canine left ventricular cardiomyocytes and to study the expression of TRPM4 in the canine heart. Experiments were carried out in enzymatically isolated canine left ventricular cardiomyocytes. Ionic currents were recorded with an action potential (AP) voltage-clamp technique in whole-cell configuration at 37 °C. An amount of 10 mM BAPTA was used in the pipette solution to exclude the potential activation of TRPM4 channels. AP was recorded with conventional sharp microelectrodes. CBA was used in 10 µM concentrations. Expression of TRPM4 protein in the heart was studied by Western blot. TRPM4 protein was expressed in the wall of all four chambers of the canine heart as well as in samples prepared from isolated left ventricular cells. CBA induced an approximately 9% reduction in AP duration measured at 75% and 90% of repolarization and decreased the short-term variability of APD90. Moreover, AP amplitude was increased and the maximal rates of phase 0 and 1 were reduced by the drug. In AP clamp measurements, CBA-sensitive current contained a short, early outward and mainly a long, inward current. Transient outward potassium current (Ito) and late sodium current (INa,L) were reduced by approximately 20% and 47%, respectively, in the presence of CBA, while L-type calcium and inward rectifier potassium currents were not affected. These effects of CBA were largely reversible upon washout. Based on our results, the CBA induced reduction of phase-1 slope and the slight increase of AP amplitude could have been due to the inhibition of Ito. The tendency for AP shortening can be explained by the inhibition of inward currents seen in AP-clamp recordings during the plateau phase. This inward current reduced by CBA is possibly INa,L, therefore, CBA is not entirely selective for TRPM4 channels. As a consequence, similarly to 9-phenanthrol, it cannot be used to test the contribution of TRPM4 channels to cardiac electrophysiology in ventricular cells, or at least caution must be applied.


Asunto(s)
Canales Catiónicos TRPM/metabolismo , Función Ventricular/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Ácido Benzoico/farmacología , Calcio/metabolismo , Electrofisiología Cardíaca , Perros , Fenómenos Electrofisiológicos , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/patología , Masculino , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Sodio/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/fisiología
2.
J Mol Cell Cardiol ; 139: 14-23, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31958464

RESUMEN

Although late sodium current (INa-late) has long been known to contribute to plateau formation of mammalian cardiac action potentials, lately it was considered as possible target for antiarrhythmic drugs. However, many aspects of this current are still poorly understood. The present work was designed to study the true profile of INa-late in canine and guinea pig ventricular cells and compare them to INa-late recorded in undiseased human hearts. INa-late was defined as a tetrodotoxin-sensitive current, recorded under action potential voltage clamp conditions using either canonic- or self-action potentials as command signals. Under action potential voltage clamp conditions the amplitude of canine and human INa-late monotonically decreased during the plateau (decrescendo-profile), in contrast to guinea pig, where its amplitude increased during the plateau (crescendo profile). The decrescendo-profile of canine INa-late could not be converted to a crescendo-morphology by application of ramp-like command voltages or command action potentials recorded from guinea pig cells. Conventional voltage clamp experiments revealed that the crescendo INa-late profile in guinea pig was due to the slower decay of INa-late in this species. When action potentials were recorded from multicellular ventricular preparations with sharp microelectrode, action potentials were shortened by tetrodotoxin, which effect was the largest in human, while smaller in canine, and the smallest in guinea pig preparations. It is concluded that important interspecies differences exist in the behavior of INa-late. At present canine myocytes seem to represent the best model of human ventricular cells regarding the properties of INa-late. These results should be taken into account when pharmacological studies with INa-late are interpreted and extrapolated to human. Accordingly, canine ventricular tissues or myocytes are suggested for pharmacological studies with INa-late inhibitors or modifiers. Incorporation of present data to human action potential models may yield a better understanding of the role of INa-late in action potential morphology, arrhythmogenesis, and intracellular calcium dynamics.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Activación del Canal Iónico , Miocardio/metabolismo , Canales de Sodio/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Venenos de Cnidarios/toxicidad , Perros , Cobayas , Humanos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Tetrodotoxina/farmacología
3.
Can J Physiol Pharmacol ; 96(10): 1022-1029, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29806985

RESUMEN

The role of transient receptor potential melastatin 4 (TRPM4) channels has been frequently tested using their inhibitor 9-phenanthrol in various cardiac preparations; however, the selectivity of the compound is uncertain. Therefore, in the present study, the concentration-dependent effects of 9-phenanthrol on major ionic currents were studied in canine isolated ventricular cells using whole-cell configuration of the patch-clamp technique and 10 mM BAPTA-containing pipette solution to prevent the Ca2+-dependent activation of TRPM4 channels. Transient outward (Ito1), rapid delayed rectifier (IKr), and inward rectifier (IK1) K+ currents were suppressed by 10 and 30 µM 9-phenanthrol with the blocking potency for IK1 < IKr < Ito1 and partial reversibility. L-type Ca2+ current was not affected up to the concentration of 30 µM. In addition, a steady outward current was detected at voltages positive to -40 mV in 9-phenanthrol, which was larger at more positive voltages and larger 9-phenanthrol concentrations. Action potentials were recorded using microelectrodes. Maximal rate of depolarization, phase-1 repolarization, and terminal repolarization were decreased and the plateau potential was depressed by 9-phenanthrol (3-30 µM), congruently with the observed alterations of ionic currents. Significant action potential prolongation was observed by 9-phenanthrol in the majority of the studied cells, but only at 30 µM concentration. In conclusion, 9-phenanthrol is not selective to TRPM4 channels in canine ventricular myocardium; therefore, its application as a TRPM4 blocker can be appropriate only in expression systems but not in native cardiac cells.


Asunto(s)
Ventrículos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fenantrenos/farmacología , Potasio/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/metabolismo , Perros , Femenino , Masculino , Miocitos Cardíacos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA