Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(26): e2214842120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339216

RESUMEN

Transplantation of stem cell-derived retinal pigment epithelial (RPE) cells is considered a viable therapeutic option for age-related macular degeneration (AMD). Several landmark Phase I/II clinical trials have demonstrated safety and tolerability of RPE transplants in AMD patients, albeit with limited efficacy. Currently, there is limited understanding of how the recipient retina regulates the survival, maturation, and fate specification of transplanted RPE cells. To address this, we transplanted stem cell-derived RPE into the subretinal space of immunocompetent rabbits for 1 mo and conducted single-cell RNA sequencing analyses on the explanted RPE monolayers, compared to their age-matched in vitro counterparts. We observed an unequivocal retention of RPE identity, and a trajectory-inferred survival of all in vitro RPE populations after transplantation. Furthermore, there was a unidirectional maturation toward the native adult human RPE state in all transplanted RPE, regardless of stem cell resource. Gene regulatory network analysis suggests that tripartite transcription factors (FOS, JUND, and MAFF) may be specifically activated in posttransplanted RPE cells, to regulate canonical RPE signature gene expression crucial for supporting host photoreceptor function, and to regulate prosurvival genes required for transplanted RPE's adaptation to the host subretinal microenvironment. These findings shed insights into the transcriptional landscape of RPE cells after subretinal transplantation, with important implications for cell-based therapy for AMD.


Asunto(s)
Degeneración Macular , Transcriptoma , Adulto , Animales , Humanos , Conejos , Degeneración Macular/genética , Degeneración Macular/terapia , Células Madre , Células Epiteliales , Pigmentos Retinianos
2.
Am J Physiol Cell Physiol ; 326(5): C1505-C1519, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557355

RESUMEN

Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.


Asunto(s)
Humor Acuoso , Digoxina , Presión Intraocular , Macaca fascicularis , Hipertensión Ocular , Animales , Presión Intraocular/efectos de los fármacos , Digoxina/farmacología , Humor Acuoso/metabolismo , Humor Acuoso/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/fisiopatología , Hipertensión Ocular/metabolismo , Modelos Animales de Enfermedad , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatología , Conejos , Humanos , Cuerpo Ciliar/efectos de los fármacos , Cuerpo Ciliar/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Masculino , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo
3.
Mol Ther ; 31(3): 825-846, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638800

RESUMEN

Blindness caused by advanced stages of inherited retinal diseases and age-related macular degeneration are characterized by photoreceptor loss. Cell therapy involving replacement with functional photoreceptor-like cells generated from human pluripotent stem cells holds great promise. Here, we generated a human recombinant retina-specific laminin isoform, LN523, and demonstrated the role in promoting the differentiation of human embryonic stem cells into photoreceptor progenitors. This chemically defined and xenogen-free method enables reproducible production of photoreceptor progenitors within 32 days. We observed that the transplantation into rd10 mice were able to protect the host photoreceptor outer nuclear layer (ONL) up to 2 weeks post transplantation as measured by full-field electroretinogram. At 4 weeks post transplantation, the engrafted cells were found to survive, mature, and associate with the host's rod bipolar cells. Visual behavioral assessment using the water maze swimming test demonstrated visual improvement in the cell-transplanted rodents. At 20 weeks post transplantation, the maturing engrafted cells were able to replace the loss of host ONL by extensive association with host bipolar cells and synapses. Post-transplanted rabbit model also provided congruent evidence for synaptic connectivity with the degenerated host retina. The results may pave the way for the development of stem cell-based therapeutics for retina degeneration.


Asunto(s)
Células Madre Pluripotentes , Degeneración Retiniana , Humanos , Ratones , Animales , Conejos , Laminina/genética , Retina , Células Fotorreceptoras , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Diferenciación Celular
4.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142120

RESUMEN

High-temperature requirement A1 (HtrA1) has been identified as a disease-susceptibility gene for age-related macular degeneration (AMD) including polypoidal choroidal neovasculopathy (PCV). We characterized the underlying phenotypic changes of transgenic (Tg) mice expressing ubiquitous CAG promoter (CAG-HtrA1 Tg). In vivo imaging modalities and histopathology were performed to investigate the possible neovascularization, drusen formation, and infiltration of macrophages. Subretinal white material deposition and scattered white-yellowish retinal foci were detected on CFP [(Tg­33% (20/60) and wild-type (WT)­7% (1/15), p < 0.05]. In 40% (4/10) of the CAG-HtrA1 Tg retina, ICGA showed punctate hyperfluorescent spots. There was no leakage on FFA and OCTA failed to confirm vascular flow signals from the subretinal materials. Increased macrophages and RPE cell migrations were noted from histopathological sections. Monocyte subpopulations were increased in peripheral blood in the CAG-HtrA1 Tg mice (p < 0.05). Laser induced CNV in the CAG-HtrA1 Tg mice and showed increased leakage from CNV compared to WT mice (p < 0.05). Finally, choroidal explants of the old CAG-HtrA1 Tg mice demonstrated an increased area of sprouting (p < 0.05). Signs of subclinical inflammation was observed in CAG-HtrA1 Tg mice. Such subclinical inflammation may have resulted in increased RPE cell activation and angiogenic potential.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Animales , Coroides/irrigación sanguínea , Neovascularización Coroidal/genética , Neovascularización Coroidal/patología , Serina Peptidasa A1 que Requiere Temperaturas Altas/genética , Inflamación/genética , Inflamación/patología , Degeneración Macular/genética , Degeneración Macular/patología , Ratones , Ratones Transgénicos , Retina/patología
5.
Opt Lett ; 46(7): 1692-1695, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33793520

RESUMEN

In swept source polarization depth encoding polarization sensitive optical coherence tomography (PS-OCT), the laser jitter induces additional noise to the polarization sensitive measurement. In this Letter, we developed a numerical algorithm to correct the jitter phases based on the image data using the Mueller matrix calculus. The algorithm was demonstrated on in vivo retina imaging of a guinea pig with a custom-built PS-OCT system. The performance of the proposed algorithm was almost comparable to the conventional method of using a physical calibration signal. By not requiring a hardware generated calibration signal and k-clock, the proposed algorithm is useful to reduce the complexity and the cost of a polarization depth encoding PS-OCT system.

6.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575793

RESUMEN

Peroxisome proliferator-activated receptor (PPAR)ß/δ is a member of the nuclear receptor superfamily of transcription factors, which plays fundamental roles in cell proliferation and differentiation, inflammation, adipogenesis, and energy homeostasis. Previous studies demonstrated a reduced choroidal neovascularization (CNV) in Pparß/δ-deficient mice. However, PPARß/δ's role in physiological blood vessel formation and vessel remodeling in the retina has yet to be established. Our study showed that PPARß/δ is specifically required for disordered blood vessel formation in the retina. We further demonstrated an increased arteriovenous crossover and wider venous caliber in Pparß/δ-haplodeficient mice. In summary, these results indicated a critical role of PPARß/δ in pathological angiogenesis and blood vessel remodeling in the retina.


Asunto(s)
Neovascularización Coroidal/genética , Receptores Citoplasmáticos y Nucleares/deficiencia , Remodelación Vascular/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Haploinsuficiencia , Humanos , Rayos Láser/efectos adversos , Ratones , Vasos Retinianos/citología , Vasos Retinianos/metabolismo
7.
Exp Eye Res ; 174: 98-106, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29852133

RESUMEN

Anti-vascular endothelial growth factor (VEGF) therapies lead to a major breakthrough in treatment of neovascular retinal diseases such as age-related macular degeneration or diabetic retinopathy. Current management of these conditions require regular and frequent intravitreal injections to prevent disease recurrence once the effect of the injected drug wears off. This has led to a pressing clinical need of developing sustained release formulations or therapies with longer duration. A major drawback in developing such therapies is that the currently available animal models show spontaneous regression of vascular leakage. They therefore not only fail to recapitulate retinal vascular disease in humans, but also prevent to discern if regression is due to prolonged therapeutic effect or simply reflects spontaneous healing. Here, we described the development of a novel rabbit model of persistent retinal neovascularization (PRNV). Retinal Müller glial are essential for maintaining the integrity of the blood-retinal barrier. Intravitreal injection of DL-alpha-aminoadipic acid (DL-AAA), a selective retinal glial (Müller) cell toxin, results in persistent vascular leakage for up to 48 weeks. We demonstrated that VEGF concentrations were significantly increased in vitreous suggesting VEGF plays a significant role in mediating the leakage observed. Intravitreal administration of anti-VEGF drugs (e.g. bevacizumab, ranibizumab and aflibercept) suppresses vascular leakage for 8-10 weeks, before recurrence of leakage to pre-treatment levels. All three anti-VEGF drugs are very effective in re-ducing angiographic leakage in PRNV model, and aflibercept demonstrated a longer duration of action compared with the others, reminiscent of what is observed with these drugs in human in the clinical setting. Therefore, this model provides a unique tool to evaluate novel anti-VEGF formulations and therapies with respect to their duration of action in comparison to the currently used drugs.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Bevacizumab/uso terapéutico , Ranibizumab/uso terapéutico , Receptores de Factores de Crecimiento Endotelial Vascular/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Neovascularización Retiniana/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Inyecciones Intravítreas , Conejos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cuerpo Vítreo/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-28784676

RESUMEN

The mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 µg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones. Both εPL and linear polyethylenimine (LPEI) exhibit bactericidal properties by depolarizing the cytoplasmic membrane and disrupt preformed biofilms. εPL displays broad-spectrum antimicrobial properties against antibiotic-resistant Gram-negative and Gram-positive strains and fungi. εPL elicits rapid bactericidal activity against both Gram-negative and Gram-positive bacteria, and its biocompatibility index is superior to those of cationic antiseptic agents and LPEI. εPL does not interfere with the wound closure of injured rabbit corneas. In a rabbit model of bacterial keratitis, the topical application of εPL (0.3%, wt/vol) decreases the bacterial burden and severity of infections caused by Pseudomonas aeruginosa and Staphylococcus aureus strains. In vivo imaging studies confirm that εPL-treated corneas appeared transparent and nonedematous compared to untreated infected corneas. Taken together, our results highlight the potential of εPL in resolving topical microbial infections.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Candida albicans/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Alilamina/farmacología , Animales , Aziridinas/farmacología , Candidiasis/tratamiento farmacológico , Línea Celular , Membrana Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Humanos , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Pruebas de Sensibilidad Microbiana , Polietileneimina/farmacología , Polilisina/farmacología , Polímeros/química , Infecciones por Pseudomonas/tratamiento farmacológico , Conejos , Infecciones Estafilocócicas/tratamiento farmacológico
9.
Nat Commun ; 15(1): 5156, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898002

RESUMEN

Phototransduction involves changes in concentration of ions and other solutes within photoreceptors and in subretinal space, which affect osmotic pressure and the associated water flow. Corresponding expansion and contraction of cellular layers can be imaged using optoretinography (ORG), based on phase-resolved optical coherence tomography (OCT). Until now, ORG could reliably detect only photoisomerization and phototransduction in photoreceptors, primarily in cones under bright stimuli. Here, by employing a phase-restoring subpixel motion correction algorithm, which enables imaging of the nanometer-scale tissue dynamics during minute-long recordings, and unsupervised learning of spatiotemporal patterns, we discover optical signatures of the other retinal structures' response to visual stimuli. These include inner and outer segments of rod photoreceptors, retinal pigment epithelium, and subretinal space in general. The high sensitivity of our technique enables detection of the retinal responses to dim stimuli: down to 0.01% bleach level, corresponding to natural levels of scotopic illumination. We also demonstrate that with a single flash, the optoretinogram can map retinal responses across a 12° field of view, potentially replacing multifocal electroretinography. This technique expands the diagnostic capabilities and practical applicability of optoretinography, providing an alternative to electroretinography, while combining structural and functional retinal imaging in the same OCT machine.


Asunto(s)
Epitelio Pigmentado de la Retina , Células Fotorreceptoras Retinianas Bastones , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Animales , Epitelio Pigmentado de la Retina/diagnóstico por imagen , Epitelio Pigmentado de la Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Retina/diagnóstico por imagen , Retina/fisiología , Luz , Estimulación Luminosa , Algoritmos , Masculino
10.
Acta Ophthalmol ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572815

RESUMEN

PURPOSE: To assess intra- (repeatability) and inter-observer (reproducibility) variability of laser speckle flowgraphy (LSFG) for retinal blood flow (RBF) measurement in 20 eyes of wild type (C57BL/6J) mice and effect of intravitreal Aflibercept on RBF in optic nerve head (ONH) region of 10 eyes of Ins2 (Akita) diabetic mice. METHODS: 'Mean blur rate (MBR)' was measured for all quadrants of tissue area (MT), vessel (MV) and total area (MA) of ONH region. Changes in MT were analysed at each timepoint. Repeatability was evaluated by measuring MBR variability without changing mouse head position, and reproducibility after resetting mouse head position by another operator. Coefficient of repeatability (CR) through Bland-Altman plot method coefficient of variation (COV) and Intraclass correlation coefficient (ICC) was calculated. Intravitreal Aflibercept (1 µg) was administered to Akita eyes and intraocular pressure (IOP) was measured using a tonometer at baseline, day 7, 14, 21 and 28 post-injection. Hurvich and Tsai's criterion was used. RESULTS: Coefficient of repeatability values of repeatability and reproducibility for all quadrants were within limits of agreement. Reliability was excellent (ICC 0.98-0.99) and reproducibility was moderate to excellent (ICC 0.64-0.96). There was a non-significant IOP increase in all Akita eyes at Day 28 (p > 0.05), and significant increase in MT in all quadrants at Day 21 and superior, inferior and temporal quadrants at Day 28 (p < 0.05). CONCLUSION: Laser speckle flowgraphy demonstrates excellent repeatability and moderate to excellent reproducibility in measuring RBF. Intravitreal Aflibercept injection results in a significant increase in MT up to 28 days post-injection without significant increase in IOP.

11.
Biomolecules ; 13(7)2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37509081

RESUMEN

Myopia, a prevalent refractive error disorder worldwide, is characterized by the elongation of the eye, leading to visual abnormalities. Understanding the genetic factors involved in myopia is crucial for developing therapeutic and preventive measures. Unfortunately, only a limited number of genes with well-defined functionality have been associated with myopia. In this study, we found that the homozygous TGM2-deleted gene in mice protected against the development of myopia by slowing down the elongation of the eye. The effectiveness of gene knockdown was confirmed by achieving a 60 percent reduction in TGM-2 transcript levels through the use of TGM-2-specific small interfering RNA (siRNA) in human scleral fibroblasts (SFs). Furthermore, treating normal mouse SFs with various transglutaminase inhibitors led to the down-regulation of TGM-2 expression, with the most significant reduction observed with specific TGM-2 inhibitors. Additionally, the study found that the pharmacological blockade of muscarinic receptors also slowed the progression of myopia in mice, and this effect was accompanied by a decrease in TGM-2 enzyme expression. Specifically, mice with homozygous mAChR5, mAChR1, and/or mAChR4 and knockout mice exhibited higher levels of TGM-2 mRNA compared to mice with homozygous mAChR2 and three knockout mice (fold changes of 5.8, 2.9, 2.4, -2.2, and -4.7, respectively; p < 0.05). These findings strongly suggest that both TGM-2 and muscarinic receptors play central roles in the development of myopia, and blocking these factors could potentially be useful in interfering with the progression of this condition. In conclusion, targeting TGM-2 may have a beneficial effect regarding myopia, and this may also be at least partially be the mechanism of anti-muscarinic drugs in myopia. Further studies should investigate the interaction between TGM-2 and muscarinic receptors, as well as the changes in other extracellular matrix genes associated with growth during the development of myopia.


Asunto(s)
Miopía , Receptores Muscarínicos , Animales , Humanos , Ratones , Receptores Muscarínicos/metabolismo , Miopía/tratamiento farmacológico , Miopía/genética , Miopía/metabolismo , Esclerótica/metabolismo , Transglutaminasas/genética , Transglutaminasas/metabolismo , Transglutaminasas/farmacología , Ratones Noqueados
12.
Methods Mol Biol ; 2678: 13-26, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37326702

RESUMEN

As the prevalence of diabetes has reached epidemic proportions worldwide, diabetic retinopathy incidence is increasing rapidly. An advanced diabetic retinopathy (DR) stage can lead to a sight-threatening form. There is growing evidence showing diabetes causes a range of metabolic changes that subsequently lead to pathological modifications in the retina and retinal blood vessels. To understand the complex mechanism of the pathophysiology of DR, a precise model is not readily available. By crossbreeding the Akita and Kimba strains, a suitable proliferative DR model was acquired. This new Akimba strain manifests marked hyperglycemia and vascular changes, which resemble the early and advanced stage of DR.Here, we describe the breeding method, colony screening for experiments, and imaging techniques widely used to investigate the DR progression in this model. We elaborate step-by-step protocols to set up and perform fundus, fluorescein angiography, optical coherence tomography, and optical coherence tomography-angiogram to study retinal structural changes and vascular abnormalities. In addition, we show a method to label the leukocytes with fluorescence and laser speckle flowgraphy to examine the inflammation in the retina and retinal vessel blood flow speed, respectively. Lastly, we describe electroretinogram to evaluate the functional aspect of the DR transformations.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Retinopatía Diabética/diagnóstico por imagen , Retinopatía Diabética/patología , Evaluación Preclínica de Medicamentos , Retina/metabolismo , Vasos Retinianos/metabolismo , Angiografía con Fluoresceína , Tomografía de Coherencia Óptica/métodos , Diabetes Mellitus/metabolismo
13.
J Vis Exp ; (200)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870304

RESUMEN

Regeneration of photoreceptor cells using human pluripotent stem cells is a promising therapy for the treatment of both hereditary and aging retinal diseases at advanced stages. We have shown human recombinant retina-specific laminin isoform matrix is able to support the differentiation of human embryonic stem cells (hESCs) to photoreceptor progenitors. In addition, sub-retinal injection of these cells has also shown partial restoration in the rd10 rodent and rabbit models. Sub-retinal injection is known to be an established method that has been used to deliver pharmaceutical compounds to the photoreceptor cells and retinal pigmented epithelial (RPE) layer of the eye due to its proximity to the target space. It has also been used to deliver adeno-associated viral vectors into the sub-retinal space to treat retinal diseases. The sub-retinal delivery of pharmaceutical compounds and cells in the murine model is challenging due to the constraint in the size of the murine eyeball. This protocol describes the detailed procedure for the preparation of hESC-derived photoreceptor progenitor cells for injection and the sub-retinal delivery technique of these cells in genetic retinitis pigmentosa mutant, rd10 mice. This approach allows cell therapy to the targeted area, in particular the outer nuclear layer of the retina, where diseases leading to photoreceptor degeneration occur.


Asunto(s)
Células Madre Embrionarias Humanas , Degeneración Retiniana , Retinitis Pigmentosa , Ratones , Humanos , Animales , Conejos , Retina , Células Fotorreceptoras , Preparaciones Farmacéuticas , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
14.
Biomolecules ; 13(3)2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36979429

RESUMEN

Myopia is a globally emerging concern accompanied by multiple medical and socio-economic burdens with no well-established causal treatment to control thus far. The study of the genomics and transcriptomics of myopia treatment is crucial to delineate disease pathways and provide valuable insights for the design of precise and effective therapeutics. A strong understanding of altered biochemical pathways and underlying pathogenesis leading to myopia may facilitate early diagnosis and treatment of myopia, ultimately leading to the development of more effective preventive and therapeutic measures. In this review, we summarize current data about the genomics and transcriptomics of myopia in human and animal models. We also discuss the potential applicability of these findings to precision medicine for myopia treatment.


Asunto(s)
Miopía , Medicina de Precisión , Animales , Humanos , Transcriptoma/genética , Miopía/genética , Miopía/prevención & control , Genómica , Perfilación de la Expresión Génica
15.
Pharmaceutics ; 15(4)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37111530

RESUMEN

The effectiveness of current antifungal therapies is hampered by the emergence of drug resistance strains, highlighting an urgent need for new alternatives such as adjuvant antifungal treatments. This study aims to examine the synergism between propranolol and antifungal drugs, based on the premise that propranolol is known to inhibit fungal hyphae. In vitro studies demonstrate that propranolol potentiates the antifungal activity of azoles and that the effect is more pronounced for propranolol-itraconazole combination. Using an in vivo murine systemic candidemia model, we show that propranolol-itraconazole combination treatment resulted in a lower rate of body weight loss, decreased kidney fungal bioburden and renal inflammation when compared to propranolol and azole treatment alone or untreated control. Altogether, our findings suggest that propranolol increases the efficacy of azoles against C. albicans, offering a new therapeutic strategy against invasive fungal infections.

16.
Transl Res ; 261: 41-56, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37419277

RESUMEN

Lack of retinoblastoma (Rb) protein causes aggressive intraocular retinal tumors in children. Recently, Rb tumors have been shown to have a distinctly altered metabolic phenotype, such as reduced expression of glycolytic pathway proteins alongside altered pyruvate and fatty acid levels. In this study, we demonstrate that loss of hexokinase 1(HK1) in tumor cells rewires their metabolism allowing enhanced oxidative phosphorylation-dependent energy production. We show that rescuing HK1 or retinoblastoma protein 1 (RB1) in these Rb cells reduced cancer hallmarks such as proliferation, invasion, and spheroid formation and increased their sensitivity to chemotherapy drugs. Induction of HK1 was accompanied by a metabolic shift of the cells to glycolysis and a reduction in mitochondrial mass. Cytoplasmic HK1 bound Liver Kinase B1 and phosphorylated AMP-activated kinase-α (AMPKα Thr172), thereby reducing mitochondria-dependent energy production. We validated these findings in tumor samples from Rb patients compared to age-matched healthy retinae. HK1 or RB1 expression in Rb-/- cells led to a reduction in their respiratory capacity and glycolytic proton flux. HK1 overexpression reduced tumor burden in an intraocular tumor xenograft model. AMPKα activation by AICAR also enhanced the tumoricidal effects of the chemotherapeutic drug topotecan in vivo. Therefore, enhancing HK1 or AMPKα activity can reprogram cancer metabolism and sensitize Rb tumors to lower doses of existing treatments, a potential therapeutic modality for Rb.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Niño , Animales , Humanos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patología , Proteínas Quinasas Activadas por AMP , Fenotipo , Modelos Animales de Enfermedad , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología
17.
Cell Transplant ; 31: 9636897221098038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603580

RESUMEN

Pancreatic islet transplantation into the anterior chamber of the eye (ACE) has been shown to improve glycemic control and metabolic parameters of diabetes in both murine and primate models. This novel transplantation site also allows the delivery of therapeutic agents, such as immunosuppressive drugs, locally to prevent islet graft rejection and circumvent unwanted systemic side effects. Local intravitreal administration of micronized dexamethasone implant was performed prior to allogeneic islet transplantation into the ACEs of non-human primates. Two study groups were observed namely allogeneic graft without immunosuppression (n = 4 eyes) and allogeneic graft with local immunosuppression (n = 8 eyes). Survival of islet grafts and dexamethasone concentration in the ACE were assessed in parallel for 24 weeks. Allogeneic islet grafts with local dexamethasone treatment showed significantly better survival than those with no immunosuppression (median survival time- 15 weeks vs 3 weeks, log-rank test p<0.0001). Around 73% of the grafts still survived at week 10 with a single local dexamethasone implant, where the control group showed no graft survival. Dexamethasone treated islet grafts revealed a good functional response to high glucose stimulation despite there was a transient suppression of insulin secretion from week 8 to 12. Our findings show a significant improvement of allografts survival in the ACE with local dexamethasone treatment. These results highlight the feasibility of local administration of pharmacological compounds in the ACE to improve islet graft survival and function. By eliminating the need for systemic immunosuppression, these findings may impact clinical islet transplantation in the treatment of diabetes, and the ACE may serve as a novel therapeutic islet transplantation site with high potential for local pharmacological intervention.


Asunto(s)
Diabetes Mellitus , Trasplante de Células Madre Hematopoyéticas , Trasplante de Islotes Pancreáticos , Animales , Cámara Anterior , Dexametasona/farmacología , Dexametasona/uso terapéutico , Rechazo de Injerto , Supervivencia de Injerto , Trasplante de Islotes Pancreáticos/métodos , Ratones , Primates
18.
Adv Mater ; 34(25): e2108360, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34726299

RESUMEN

The traditional intravitreal injection delivery of antivascular endothelial growth factor (anti-VEGF) to the posterior segment of the eye for treatment of retinal diseases is invasive and associated with sight-threatening complications. To avoid such complications, there has been significant interest in developing polymers for topical drug delivery to the retina. This study reports a nanomicelle drug delivery system made of a copolymer EPC (nEPCs), which is capable of delivering aflibercept to the posterior segment topically through corneal-scleral routes. EPC is composed of poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and polycaprolactone (PCL) segments. In this study, aflibercept-loaded nEPCs (nEPCs + A) are capable of penetrating the cornea in ex vivo porcine eye models and deliver a clinically significant amount of aflibercept to the retina in laser-induced choroidal neovascularization (CNV) murine models, causing CNV regression. nEPCs + A also demonstrate biocompatibility in vitro and in vivo. Interestingly, this study also suggests that nEPCs have intrinsic antiangiogenic properties. The ability to deliver anti-VEGF drugs and the intrinsic antiangiogenic properties of nEPCs may result in synergistic effects, which can be harnessed for effective therapeutics. nEPCs may be a promising topical anti-VEGF delivery platform for the treatment of retinal diseases.


Asunto(s)
Neovascularización Coroidal , Enfermedades de la Retina , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/etiología , Sistemas de Liberación de Medicamentos , Ratones , Receptores de Factores de Crecimiento Endotelial Vascular/uso terapéutico , Proteínas Recombinantes de Fusión , Enfermedades de la Retina/complicaciones , Enfermedades de la Retina/tratamiento farmacológico , Porcinos , Factor A de Crecimiento Endotelial Vascular
19.
Nat Commun ; 13(1): 2796, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589753

RESUMEN

One common cause of vision loss after retinal detachment surgery is the formation of proliferative and contractile fibrocellular membranes. This aberrant wound healing process is mediated by epithelial-mesenchymal transition (EMT) and hyper-proliferation of retinal pigment epithelial (RPE) cells. Current treatment relies primarily on surgical removal of these membranes. Here, we demonstrate that a bio-functional polymer by itself is able to prevent retinal scarring in an experimental rabbit model of proliferative vitreoretinopathy. This is mediated primarily via clathrin-dependent internalisation of polymeric micelles, downstream suppression of canonical EMT transcription factors, reduction of RPE cell hyper-proliferation and migration. Nuclear factor erythroid 2-related factor 2 signalling pathway was identified in a genome-wide transcriptomic profiling as a key sensor and effector. This study highlights the potential of using synthetic bio-functional polymer to modulate RPE cellular behaviour and offers a potential therapy for retinal scarring prevention.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Epitelio Pigmentado de la Retina , Animales , Línea Celular , Movimiento Celular , Cicatriz/metabolismo , Transición Epitelial-Mesenquimal , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Polímeros/metabolismo , Conejos , Epitelio Pigmentado de la Retina/metabolismo
20.
Stem Cell Res Ther ; 12(1): 423, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315534

RESUMEN

BACKGROUND: Human pluripotent stem cells (hPSCs) provide a promising cell source for retinal cell replacement therapy but often lack standardized cell production and live-cell shipment logistics as well as rigorous analyses of surgical procedures for cell transplantation in the delicate macula area. We have previously established a xeno- and feeder cell-free production system for hPSC differentiated retinal pigment epithelial (RPE) cells, and herein, a novel immunosuppressed non-human primate (NHP) model with a disrupted ocular immune privilege is presented for transplanting human embryonic stem cell (hESC)-derived RPE on a scaffold, and the safety and submacular graft integration are assessed. Furthermore, the feasibility of intercontinental shipment of live hESC-RPE is examined. METHODS: Cynomolgus monkeys were systemically immunosuppressed and implanted with a hESC-RPE monolayer on a permeable polyester-terephthalate (PET) scaffold. Microscope-integrated intraoperative optical coherence tomography (miOCT)-guided surgery, postoperative follow-up incorporated scanning laser ophthalmoscopy, spectral domain (SD-) OCT, and full-field electroretinography (ERG) were used as outcome measures. In addition, histology was performed after a 28-day follow-up. RESULTS: Intercontinental cell shipment, which took >30 h from the manufacturing to the transplantation site, did not alter the hESC-RPE quality. The submacular hESC-RPE xenotransplantation was performed in 11 macaques. The miOCT typically revealed foveal disruption. ERG showed amplitude and peak time preservation in cases with favorable surgical outcomes. Histology confirmed photoreceptor preservation above the grafts and in vivo phagocytosis by hESC-RPE, albeit evidence of cytoplasmic redistribution of opsin in photoreceptors and glia hypertrophy. The immunosuppression protocol efficiently suppressed retinal T cell infiltration and microglia activation. CONCLUSION: These results suggest both structural and functional submacular integrations of hESC-RPE xenografts. It is anticipated that surgical technique refinement will further improve the engraftment of macular cell therapeutics with significant translational relevance to improve future clinical trials.


Asunto(s)
Células Madre Embrionarias Humanas , Animales , Diferenciación Celular , Línea Celular , Xenoinjertos , Humanos , Primates , Epitelio Pigmentado de la Retina , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA