Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nanotechnology ; 34(4)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36215962

RESUMEN

The present work reports the antibacterial activity againstPseudomonasaeruginosaof a nanocomposite made of zinc oxide nanoparticles dispersed in a poly(acrylamide-co-hydroxyethylmethacrylate) matrix (PAAm-Hema-ZnONPs). Thein situsynthesis of ZnONPs inside of the PAAm-Hema crosslinked network is described. Moreover, the physicochemical properties of the PAAm-Hema-ZnONPs nanocomposite are analyzed. The results confirm that the PAAm-Hema hydrogel provides an excellent scaffold to generate ZnONPs. The presence of ZnONPs inside the hydrogel was confirmed by UV-visible (band at 320 nm), by Infrared spectroscopy (peak at 470 cm-1), SEM, and TEM images. The presence of NPs in PAAm-Hema diminish the swelling percentage by 70%, and the Young modulus by 33.7%, compared with pristine hydrogel. The 75% of ZnONPs are released from the nanocomposite after 48 h of spontaneous diffusion, allowing the use of the nanocomposite as an antibacterial agent.In vitro, the agar diffusion test presents an inhibition halo againstP. aeruginosabacteria 50% higher than the unloaded hydrogel. Also, the PAAm-Hema-ZnONPs live/dead test shows 54% of dead cells more than the hydrogel. These results suggest that the easy, one-step way generated composites can be used in biomedical applications as antimicrobial agents.


Asunto(s)
Nanocompuestos , Nanopartículas , Óxido de Zinc , Óxidos , Nanocompuestos/química , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/química , Hidrogeles/farmacología , Hidrogeles/química , Acrilamidas
2.
J Microsc ; 246(3): 274-8, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22494393

RESUMEN

A direct study of the shape, size and connectivity of nonordered pores in carbon materials is particularly challenging. A new method that allows direct three-dimensional (3D) investigations of mesopores in monolithic carbon materials and quantitative characterization of their physical properties (surface area and pore size distribution) is reported. Focused ion beam (FIB) nanotomography technique is performed by combination of focused ion beam and scanning electron microscope. Porous monolithic carbon is produced by carbonization of a resorcinol-formaldehyde gel in the presence of a cationic polyelectrolyte as a pore stabilizer.

3.
Nanotechnology ; 22(24): 245504, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21508493

RESUMEN

Macroporous hydrogels irreversibly absorb solid nanoparticles from aqueous dispersions. A nanocomposite is made using a macroporous thermosensitive hydrogel (poly(N-isopropylacrylamide-co-(2-acrylamido-2-methyl propane sulfonic acid)) (poly(NIPAm-co-AMPS)) and conductive polymer (polyaniline, PANI) nanoparticles (PANI NPs). Macroporous gels of poly(NIPAm-co-AMPS) were made by a cryogelation technique. NPs of PANI were produced by precipitation polymerization. It is found that PANI NPs are easily absorbed into the macroporous hydrogels while conventional non-porous hydrogels do not incorporate NPs. It is shown that PANI NPs, dispersed in water, absorb NIR laser light or microwave radiation, increasing their temperature. Upon irradiation of the nanocomposite with microwaves or NIR laser light, the PANI NPs heat up and induce the phase transition of the thermosensitive hydrogel matrix and the internal solution is released. Other nano-objects, such as gold nanorods and PANI nanofibers, are also easily incorporated into the macroporous gel. The resulting nanocomposites also suffer a phase transition upon irradiation with electromagnetic waves. The results suggest that, using a thermosensitive matrix and conducting nanoparticles, mechanical/chemical actuators driven at a distance by electromagnetic radiation can be built. The sensitivity of the nanocomposite to electromagnetic radiation can be modulated by the pH, depending on the nature of the incorporated nanoparticles. Additionally, it is possible to make systems which absorb either NIR or microwaves or both.

4.
Phys Chem Chem Phys ; 12(35): 10584-93, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20625574

RESUMEN

Spectroscopic methods are used to investigate the formation of low molecular mass intermediates during aniline (ANI) oxidation and polyaniline (PANI) degradation. Studying ANI anodic oxidation by in situ Fourier transform infrared spectroscopy (FTIRS) it is possible to obtain, for the first time, spectroscopic evidence for ANI dimers produced by head-to-tail (4-aminodiphenylamine, 4ADA) and tail-to-tail (benzidine, BZ) coupling of ANI cation radicals. The 4ADA dimer is adsorbed on the electrode surface during polymerization, as proved by cyclic voltammetry of thin PANI films and its infrared spectrum. This method also allows, with the help of computational simulations, to assign characteristic vibration frequencies for the different oxidation states of PANI. The presence of 4ADA retained inside thin polymer layers is established too. On the other hand, FTIRS demonstrates that the electrochemically promoted degradation of PANI renders p-benzoquinone as its main product. This compound, retained inside the film, is apparent in the cyclic voltammogram in the same potential region previously observed for 4ADA dimer. Therefore, applying in situ FTIRS is possible to distinguish between different chemical species (4ADA or p-benzoquinone) which give rise to voltammetric peaks in the same potential region. Indophenol and CO(2) are also detected by FTIRS during ANI oxidation and polymer degradation. The formation of CO(2) during degradation is confirmed by differential electrochemical mass spectroscopy. To the best of our knowledge, this is the first evidence of the oxidation of a conducting polymer to CO(2) by electrochemical means. The relevance of the production of different intermediate species towards PANI fabrication and applications is discussed.

5.
Colloids Surf B Biointerfaces ; 150: 1-7, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27863264

RESUMEN

Biofilm Formation is a survival strategy for microorganisms to adapt to their environment. Microbial cells in biofilm become tolerant and resistant to antibiotics and immune responses, increasing the difficulties for the clinical treatment of microbial infections. The surface chemistry and the micro/nano-topography of solid interfaces play a major role in mediating microorganism activity and adhesion. The effect of the surface chemical composition and topography on the adhesion and viability of Pseudomonas aeruginosa was studied. Polymeric (polyethylene terephthalate) surfaces were covered with a conducting polymer (polyaniline, PANI) film by in-situ polymerization and microstructured by Direct Laser Interference Patterning (DLIP). The viability of Pseudomonas aeruginosa on the different surfaces was investigated. The physicochemical properties of the surfaces were characterized by water contact angle measurements, scanning electron microscopy and atomic force microscopy. Bacterial biofilms were imaged by atomic force and scanning electron microscopies. The bacterial viability decreased on PANI compared with the substrate (polyethylene terephthalate) and it decreased even more upon micro-structuring the PANI films. In addition, the biofilm reduction could be improved using polymers with different chemical composition and/or the same polymer with different topographies. Both methods presented diminish the bacterial attachment and biofilm formation. These findings present a high impact related to materials for biomedical engineer applications regarding medical devices, as prostheses or catheters.


Asunto(s)
Compuestos de Anilina/química , Biopelículas , Pseudomonas aeruginosa/fisiología , Adhesión Bacteriana , Materiales Biocompatibles/química , Catéteres , Farmacorresistencia Bacteriana , Equipos y Suministros , Violeta de Genciana/química , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Tereftalatos Polietilenos/química , Propiedades de Superficie
6.
Ultramicroscopy ; 145: 66-73, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24726278

RESUMEN

We present an atomic resolution transmission electron microscopy (TEM) and scanning TEM (STEM) study of the local structure and composition of graphene oxide modified with Ba(2+). In our experiments, which are carried out at 80kV, the acquisition of contamination-free high-resolution STEM images is only possible while heating the sample above 400°C using a highly stable heating holder. Ba atoms are identified spectroscopically in electron energy-loss spectrum images taken at 800°C and are associated with bright contrast in high-angle annular dark-field STEM images. The spectrum images also show that Ca and O occur together and that Ba is not associated with a significant concentration of O. The electron dose used for spectrum imaging results in beam damage to the specimen, even at elevated temperature. It is also possible to identify Ba atoms in high-resolution TEM images acquired using shorter exposure times at room temperature, thereby allowing the structure of graphene oxide to be studied using complementary TEM and STEM techniques over a wide range of temperatures.

7.
Talanta ; 80(3): 1318-25, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20006094

RESUMEN

We developed a method to graft a tripeptide (glutathione) onto 5-hydroxy-1,4-naphthoquinone, an electropolymerizable molecule. The resulting thin conducting polymer presents a well-defined and stable electroactivity in neutral buffered solution, due to the embedded quinone group, and is able to covalently graft amino-modified DNA probe strands. It is shown that the bioelectrode presents positive current change following DNA hybridization. This makes a "signal-on" direct electrochemical DNA sensor. The results were obtained with low target concentration (50nM) and the selectivity is excellent as a single-mismatch sequence can be discriminated from the full-complementary target.


Asunto(s)
Técnicas Biosensibles/métodos , Glutatión/química , Naftoquinonas/química , Polímeros/química , Aminas/química , Secuencia de Bases , ADN/análisis , ADN/química , ADN/genética , Sondas de ADN/química , Sondas de ADN/genética , Conductividad Eléctrica , Electroquímica , Hidróxidos/química , Hibridación de Ácido Nucleico , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Espectrometría de Fluorescencia
8.
Phys Chem Chem Phys ; 10(44): 6677-85, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18989480

RESUMEN

Probe beam deflection (PBD) techniques, both as cyclic voltadeflectometry (CVD) and chronodeflectometry (CD), were applied for the first time to the study of the electrochemistry of nanostructured Pt materials which are commonly used as electrocatalysts in fuel cells. The electrochemical surface reactions, including faradaic processes, double layer charging and specific anion adsorption were easily detected. Quantitative analysis of the chronodeflectometric data made possible to elucidate the dynamics of double layer charging in such materials and to determine the potential of zero charge (pzc) of the metal present either as a monolithic mesoporous material or as metal nanoparticles supported on carbon. The electro-oxidation of CO, adsorbed on nanostructured Pt, was also studied by CVD and CD being able to detect the formation of CO2 and H3O+ related with the nucleation and growth process which controls the rate of CO stripping. The interplay of Pt oxide formation and COad electrooxidation, both in potential and time, was detected indicating possible application of the technique to other electrocatalysts.


Asunto(s)
Monóxido de Carbono/química , Electroquímica/métodos , Nanoestructuras/química , Platino (Metal)/química , Adsorción , Dióxido de Carbono/química , Catálisis , Electrodos , Oxidación-Reducción , Percloratos/química , Ácidos Sulfúricos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA