Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37112413

RESUMEN

Neural networks are usually trained with different variants of gradient descent-based optimization algorithms such as the stochastic gradient descent or the Adam optimizer. Recent theoretical work states that the critical points (where the gradient of the loss is zero) of two-layer ReLU networks with the square loss are not all local minima. However, in this work, we will explore an algorithm for training two-layer neural networks with ReLU-like activation and the square loss that alternatively finds the critical points of the loss function analytically for one layer while keeping the other layer and the neuron activation pattern fixed. Experiments indicate that this simple algorithm can find deeper optima than stochastic gradient descent or the Adam optimizer, obtaining significantly smaller training loss values on four out of the five real datasets evaluated. Moreover, the method is faster than the gradient descent methods and has virtually no tuning parameters.

2.
Sensors (Basel) ; 21(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34960583

RESUMEN

Neural networks are popular and useful in many fields, but they have the problem of giving high confidence responses for examples that are away from the training data. This makes the neural networks very confident in their prediction while making gross mistakes, thus limiting their reliability for safety-critical applications such as autonomous driving and space exploration, etc. This paper introduces a novel neuron generalization that has the standard dot-product-based neuron and the radial basis function (RBF) neuron as two extreme cases of a shape parameter. Using a rectified linear unit (ReLU) as the activation function results in a novel neuron that has compact support, which means its output is zero outside a bounded domain. To address the difficulties in training the proposed neural network, it introduces a novel training method that takes a pretrained standard neural network that is fine-tuned while gradually increasing the shape parameter to the desired value. The theoretical findings of the paper are bound on the gradient of the proposed neuron and proof that a neural network with such neurons has the universal approximation property. This means that the network can approximate any continuous and integrable function with an arbitrary degree of accuracy. The experimental findings on standard benchmark datasets show that the proposed approach has smaller test errors than the state-of-the-art competing methods and outperforms the competing methods in detecting out-of-distribution samples on two out of three datasets.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Benchmarking , Neuronas , Reproducibilidad de los Resultados
3.
Mol Genet Metab ; 125(1-2): 168-173, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30055995

RESUMEN

PURPOSE: Limited information is available regarding chronic treatment with pirfenidone, an anti-fibrotic drug. Effects of long-term open-label pirfenidone were evaluated in a small cohort with Hermansky-Pudlak syndrome (HPS), a rare autosomal recessive disorder with highly penetrant pulmonary fibrosis. RESULTS: Three patients with HPS pulmonary fibrosis treated with open-label pirfenidone and twenty-one historical controls randomized to placebo were studied at a single center. Mean duration of treatment with pirfenidone for 3 patients with HPS pulmonary fibrosis was 13.1 years. Annual changes in FVC and DLCO with pirfenidone treatment were 0.46 and - 0.93% predicted, respectively. In comparison, historical controls randomized to receive placebo experienced mean annual changes in FVC and DLCO of -4.4 and - 2.3% predicted, respectively. High-resolution computed tomography (HRCT) scans revealed improved ground glass opacities with development of minimal interstitial reticulations in 1 patient after 12.8 years of treatment with pirfenidone. Slowly progressive increase in bilateral interstitial fibrosis developed in a different patient, who received pirfenidone for 18.1 years and died at 73 years of age due to HPS pulmonary fibrosis. Another patient treated with pirfenidone for 8.4 years had attenuated ground glass opacification on HRCT scan and improved oxygenation; this patient died due to chronic complications from colitis, and not pulmonary fibrosis. Adverse effects were generally limited to mild gastrointestinal discomfort and transient elevations of alanine aminotransferase in one patient. CONCLUSIONS: Chronic treatment with pirfenidone may provide clinical benefit with few adverse effects for some patients with HPS pulmonary fibrosis. These results suggest that compassionate use of pirfenidone could be considered on a case-by-case basis for patients with HPS pulmonary fibrosis.


Asunto(s)
Síndrome de Hermanski-Pudlak/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Piridonas/administración & dosificación , Adulto , Anciano , Femenino , Síndrome de Hermanski-Pudlak/complicaciones , Síndrome de Hermanski-Pudlak/diagnóstico por imagen , Síndrome de Hermanski-Pudlak/patología , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/patología , Piridonas/efectos adversos , Tomografía Computarizada por Rayos X
4.
PLoS One ; 14(9): e0220842, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31509541

RESUMEN

Filter or screening methods are often used as a preprocessing step for reducing the number of variables used by a learning algorithm in obtaining a classification or regression model. While there are many such filter methods, there is a need for an objective evaluation of these methods. Such an evaluation is needed to compare them with each other and also to answer whether they are at all useful, or a learning algorithm could do a better job without them. For this purpose, many popular screening methods are partnered in this paper with three regression learners and five classification learners and evaluated on ten real datasets to obtain accuracy criteria such as R-square and area under the ROC curve (AUC). The obtained results are compared through curve plots and comparison tables in order to find out whether screening methods help improve the performance of learning algorithms and how they fare with each other. Our findings revealed that the screening methods were useful in improving the prediction of the best learner on two regression and two classification datasets out of the ten datasets evaluated.


Asunto(s)
Investigación Empírica , Modelos Teóricos , Humanos
5.
IEEE Trans Pattern Anal Mach Intell ; 39(2): 272-286, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27019473

RESUMEN

Many computer vision and medical imaging problems are faced with learning from large-scale datasets, with millions of observations and features. In this paper we propose a novel efficient learning scheme that tightens a sparsity constraint by gradually removing variables based on a criterion and a schedule. The attractive fact that the problem size keeps dropping throughout the iterations makes it particularly suitable for big data learning. Our approach applies generically to the optimization of any differentiable loss function, and finds applications in regression, classification and ranking. The resultant algorithms build variable screening into estimation and are extremely simple to implement. We provide theoretical guarantees of convergence and selection consistency. In addition, one dimensional piecewise linear response functions are used to account for nonlinearity and a second order prior is imposed on these functions to avoid overfitting. Experiments on real and synthetic data show that the proposed method compares very well with other state of the art methods in regression, classification and ranking while being computationally very efficient and scalable.

6.
IEEE Trans Pattern Anal Mach Intell ; 27(8): 1239-53, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16119263

RESUMEN

Many vision tasks can be formulated as graph partition problems that minimize energy functions. For such problems, the Gibbs sampler provides a general solution but is very slow, while other methods, such as Ncut and graph cuts are computationally effective but only work for specific energy forms and are not generally applicable. In this paper, we present a new inference algorithm that generalizes the Swendsen-Wang method to arbitrary probabilities defined on graph partitions. We begin by computing graph edge weights, based on local image features. Then, the algorithm iterates two steps. 1) Graph clustering: It forms connected components by cutting the edges probabilistically based on their weights. 2) Graph relabeling: It selects one connected component and flips probabilistically, the coloring of all vertices in the component simultaneously. Thus, it realizes the split, merge, and regrouping of a "chunk" of the graph, in contrast to Gibbs sampler that flips a single vertex. We prove that this algorithm simulates ergodic and reversible Markov chain jumps in the space of graph partitions and is applicable to arbitrary posterior probabilities or energy functions defined on graphs. We demonstrate the algorithm on two typical problems in computer vision--image segmentation and stereo vision. Experimentally, we show that it is 100-400 times faster in CPU time than the classical Gibbs sampler and 20-40 times faster then the DDMCMC segmentation algorithm. For stereo, we compare performance with graph cuts and belief propagation. We also show that our algorithm can automatically infer generative models and obtain satisfactory results (better than the graphic cuts or belief propagation) in the same amount of time.


Asunto(s)
Algoritmos , Inteligencia Artificial , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Almacenamiento y Recuperación de la Información/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Fotogrametría/métodos , Análisis por Conglomerados , Gráficos por Computador , Simulación por Computador , Imagenología Tridimensional/métodos , Modelos Estadísticos , Análisis Numérico Asistido por Computador , Procesamiento de Señales Asistido por Computador , Técnica de Sustracción
7.
IEEE Trans Pattern Anal Mach Intell ; 35(7): 1649-59, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23681993

RESUMEN

Object parsing and segmentation from point clouds are challenging tasks because the relevant data is available only as thin structures along object boundaries or other features, and is corrupted by large amounts of noise. To handle this kind of data, flexible shape models are desired that can accurately follow the object boundaries. Popular models such as active shape and active appearance models (AAMs) lack the necessary flexibility for this task, while recent approaches such as the recursive compositional models make model simplifications to obtain computational guarantees. This paper investigates a hierarchical Bayesian model of shape and appearance in a generative setting. The input data is explained by an object parsing layer which is a deformation of a hidden principal component analysis (PCA) shape model with Gaussian prior. The paper also introduces a novel efficient inference algorithm that uses informed data-driven proposals to initialize local searches for the hidden variables. Applied to the problem of object parsing from structured point clouds such as edge detection images, the proposed approach obtains state-of-the-art parsing errors on two standard datasets without using any intensity information.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Animales , Teorema de Bayes , Cara/anatomía & histología , Humanos , Cadenas de Markov , Modelos Estadísticos , Análisis de Componente Principal
8.
IEEE Trans Med Imaging ; 31(2): 240-50, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21968722

RESUMEN

Lymph nodes are assessed routinely in clinical practice and their size is followed throughout radiation or chemotherapy to monitor the effectiveness of cancer treatment. This paper presents a robust learning-based method for automatic detection and segmentation of solid lymph nodes from CT data, with the following contributions. First, it presents a learning based approach to solid lymph node detection that relies on marginal space learning to achieve great speedup with virtually no loss in accuracy. Second, it presents a computationally efficient segmentation method for solid lymph nodes (LN). Third, it introduces two new sets of features that are effective for LN detection, one that self-aligns to high gradients and another set obtained from the segmentation result. The method is evaluated for axillary LN detection on 131 volumes containing 371 LN, yielding a 83.0% detection rate with 1.0 false positive per volume. It is further evaluated for pelvic and abdominal LN detection on 54 volumes containing 569 LN, yielding a 80.0% detection rate with 3.2 false positives per volume. The running time is 5-20 s per volume for axillary areas and 15-40 s for pelvic. An added benefit of the method is the capability to detect and segment conglomerated lymph nodes.


Asunto(s)
Algoritmos , Ganglios Linfáticos/diagnóstico por imagen , Linfoma/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Humanos , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
9.
Artículo en Inglés | MEDLINE | ID: mdl-20879211

RESUMEN

Lymph node detection and measurement is a difficult and important part of cancer treatment. In this paper we present a robust and effective learning-based method for the automatic detection of solid lymph nodes from Computed Tomography data. The contributions of the paper are the following. First, it presents a learning based approach to lymph node detection based on Marginal Space Learning. Second, it presents an efficient MRF-based segmentation method for solid lymph nodes. Third, it presents two new sets of features, one set self-aligning to the local gradients and another set based on the segmentation result. An extensive evaluation on 101 volumes containing 362 lymph nodes shows that this method obtains a 82.3% detection rate at 1 false positive per volume, with an average running time of 5-20 seconds per volume.


Asunto(s)
Algoritmos , Inteligencia Artificial , Imagenología Tridimensional/métodos , Ganglios Linfáticos/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Axila , Humanos , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
IEEE Trans Image Process ; 18(11): 2451-62, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19635701

RESUMEN

Many computer vision problems can be formulated in a Bayesian framework based on Markov random fields (MRF) or conditional random fields (CRF). Generally, the MRF/CRF model is learned independently of the inference algorithm that is used to obtain the final result. In this paper, we observe considerable gains in speed and accuracy by training the MRF/CRF model together with a fast and suboptimal inference algorithm. An active random field (ARF) is defined as a combination of a MRF/CRF based model and a fast inference algorithm for the MRF/CRF model. This combination is trained through an optimization of a loss function and a training set consisting of pairs of input images and desired outputs. We apply the ARF concept to image denoising, using the Fields of Experts MRF together with a 1-4 iteration gradient descent algorithm for inference. Experimental validation on unseen data shows that the ARF approach obtains an improved benchmark performance as well as a 1000-3000 times speedup compared to the Fields of Experts MRF. Using the ARF approach, image denoising can be performed in real-time, at 8fps on a single CPU for a 256 x 256 image sequence, with close to state-of-the-art accuracy.

11.
IEEE Trans Med Imaging ; 27(11): 1668-81, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18955181

RESUMEN

We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.


Asunto(s)
Inteligencia Artificial , Corazón/anatomía & histología , Corazón/fisiopatología , Procesamiento de Imagen Asistido por Computador/métodos , Almacenamiento y Recuperación de la Información/métodos , Modelos Cardiovasculares , Anatomía Transversal/métodos , Procesamiento Automatizado de Datos/métodos , Análisis de Elementos Finitos , Humanos , Reconocimiento de Normas Patrones Automatizadas/métodos , Proyectos de Investigación/estadística & datos numéricos , Tomografía Computarizada por Rayos X/métodos
12.
Artículo en Inglés | MEDLINE | ID: mdl-17354805

RESUMEN

In this paper, we present a learning-based method for the detection and segmentation of 3D free-form tubular structures, such as the rectal tubes in CT colonoscopy. This method can be used to reduce the false alarms introduced by rectal tubes in current polyp detection algorithms. The method is hierarchical, detecting parts of the tube in increasing order of complexity, from tube cross sections and tube segments to the whole flexible tube. To increase the speed of the algorithm, candidate parts are generated using a voting strategy. The detected tube segments are combined into a flexible tube using a dynamic programming algorithm. Testing the algorithm on 210 unseen datasets resulted in a tube detection rate of 94.7% and 0.12 false alarms per volume. The method can be easily retrained to detect and segment other tubular 3D structures.


Asunto(s)
Artefactos , Colonografía Tomográfica Computarizada/métodos , Imagenología Tridimensional/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Prótesis e Implantes , Intensificación de Imagen Radiográfica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Algoritmos , Inteligencia Artificial , Humanos , Almacenamiento y Recuperación de la Información/métodos , Recto/diagnóstico por imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA