Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Inhal Toxicol ; 35(9-10): 241-253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37330949

RESUMEN

OBJECTIVE: Workers may be exposed to vapors emitted from crude oil in upstream operations in the oil and gas industry. Although the toxicity of crude oil constituents has been studied, there are very few in vivo investigations designed to mimic crude oil vapor (COV) exposures that occur in these operations. The goal of the current investigation was to examine lung injury, inflammation, oxidant generation, and effects on the lung global gene expression profile following a whole-body acute or sub-chronic inhalation exposure to COV. MATERIALS AND METHODS: To conduct this investigation, rats were subjected to either a whole-body acute (6 hr) or a sub-chronic (28 d) inhalation exposure (6 hr/d × 4 d/wk × 4 wk) to COV (300 ppm; Macondo well surrogate oil). Control rats were exposed to filtered air. One and 28 d after acute exposure, and 1, 28, and 90 d following sub-chronic exposure, bronchoalveolar lavage was performed on the left lung to collect cells and fluid for analyses, the apical right lobe was preserved for histopathology, and the right cardiac and diaphragmatic lobes were processed for gene expression analyses. RESULTS: No exposure-related changes were identified in histopathology, cytotoxicity, or lavage cell profiles. Changes in lavage fluid cytokines indicative of inflammation, immune function, and endothelial function after sub-chronic exposure were limited and varied over time. Minimal gene expression changes were detected only at the 28 d post-exposure time interval in both the exposure groups. CONCLUSION: Taken together, the results from this exposure paradigm, including concentration, duration, and exposure chamber parameters, did not indicate significant and toxicologically relevant changes in markers of injury, oxidant generation, inflammation, and gene expression profile in the lung.


Asunto(s)
Petróleo , Neumonía , Ratas , Animales , Petróleo/toxicidad , Petróleo/metabolismo , Transcriptoma , Neumonía/patología , Pulmón , Gases/análisis , Gases/metabolismo , Gases/farmacología , Inflamación/patología , Oxidantes/metabolismo , Líquido del Lavado Bronquioalveolar , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis
2.
Inhal Toxicol ; 34(3-4): 51-67, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35294311

RESUMEN

Humans will set foot on the Moon again soon. The lunar dust (LD) is potentially reactive and could pose an inhalation hazard to lunar explorers. We elucidated LD toxicity and investigated the toxicological impact of particle surface reactivity (SR) using three LDs, quartz, and TiO2. We first isolated the respirable-size-fraction of an Apollo-14 regolith and ground two coarser samples to produce fine LDs with increased SR. SR measurements of these five respirable-sized dusts, determined by their in-vitro ability to generate hydroxyl radicals (•OH), showed that ground LDs > unground LD ≥ TiO2 ≥ quartz. Rats were each intratracheally instilled with 0, 1, 2.5, or 7.5 mg of a test dust. Toxicity biomarkers and histopathology were assessed up to 13 weeks after the bolus instillation. All dusts caused dose-dependent-increases in pulmonary lesions and toxicity biomarkers. The three LDs, which possessed mineral compositions/properties similar to Arizona volcanic ash, were moderately toxic. Despite a 14-fold •OH difference among these three LDs, their toxicities were indistinguishable. Quartz produced the lowest •OH amount but showed the greatest toxicity. Our results showed no correlation between the toxicity of mineral dusts and their ability to generate free radicals. We also showed that the amounts of oxidants per neutrophil increased with doses, time and the cytotoxicity of the dusts in the lung, which supports our postulation that dust-elicited neutrophilia is the major persistent source of oxidative stress. These results and the discussion of the crucial roles of the short-lived, continuously replenished neutrophils in dust-induced pathogenesis are presented.


Asunto(s)
Polvo , Enfermedades Pulmonares , Animales , Biomarcadores , Polvo/análisis , Enfermedades Pulmonares/inducido químicamente , Luna , Oxidantes/toxicidad , Cuarzo/toxicidad , Ratas , Dióxido de Silicio/toxicidad , Titanio
3.
Toxicol Appl Pharmacol ; 408: 115280, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065154

RESUMEN

The pulmonary inflammatory response to inhalation exposure to a fracking sand dust (FSD 8) was investigated in a rat model. Adult male Sprague-Dawley rats were exposed by whole-body inhalation to air or an aerosol of a FSD, i.e., FSD 8, at concentrations of 10 or 30 mg/m3, 6 h/d for 4 d. The control and FSD 8-exposed rats were euthanized at post-exposure time intervals of 1, 7 or 27 d and pulmonary inflammatory, cytotoxic and oxidant responses were determined. Deposition of FSD 8 particles was detected in the lungs of all the FSD 8-exposed rats. Analysis of bronchoalveolar lavage parameters of toxicity, oxidant generation, and inflammation did not reveal any significant persistent pulmonary toxicity in the FSD 8-exposed rats. Similarly, the lung histology of the FSD 8-exposed rats showed only minimal changes in influx of macrophages following the exposure. Determination of global gene expression profiles detected statistically significant differential expressions of only six and five genes in the 10 mg/m3, 1-d post-exposure, and the 30 mg/m3, 7-d post-exposure FSD 8 groups, respectively. Taken together, data obtained from the present study demonstrated that FSD 8 inhalation exposure resulted in no statistically significant toxicity or gene expression changes in the lungs of the rats. In the absence of any information about its potential toxicity, a comprehensive rat animal model study (see Fedan, J.S., Toxicol Appl Pharmacol. 000, 000-000, 2020) has been designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems.


Asunto(s)
Polvo , Fracking Hidráulico , Arena , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Expresión Génica , Inflamación/genética , Inflamación/inmunología , Recuento de Leucocitos , Pulmón/inmunología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/inmunología , Macrófagos/inmunología , Masculino , Ratas Sprague-Dawley
4.
Toxicol Appl Pharmacol ; 409: 115284, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33068619

RESUMEN

Hydraulic fracturing creates fissures in subterranean rock to increase the flow and retrieval of natural gas. Sand ("proppant") in fracking fluid injected into the well bore maintains fissure patency. Fracking sand dust (FSD) is generated during manipulation of sand to prepare the fracking fluid. Containing respirable crystalline silica, FSD could pose hazards similar to those found in work sites where silica inhalation induces lung disease such as silicosis. This study was performed to evaluate the possible toxic effects following inhalation of a FSD (FSD 8) in the lung and airways. Rats were exposed (6 h/d × 4 d) to 10 or 30 mg/m3 of a FSD collected at a gas well, and measurements were performed 1, 7, 27 and, in one series of experiments, 90 d post-exposure. The following ventilatory and non-ventilatory parameters were measured in vivo and/or in vitro: 1) lung mechanics (respiratory system resistance and elastance, tissue damping, tissue elastance, Newtonian resistance and hysteresivity); 2) airway reactivity to inhaled methacholine (MCh); airway epithelium integrity (isolated, perfused trachea); airway efferent motor nerve activity (electric field stimulation in vitro); airway smooth muscle contractility; ion transport in intact and cultured epithelium; airway effector and sensory nerves; tracheal particle deposition; and neurogenic inflammation/vascular permeability. FSD 8 was without large effect on most parameters, and was not pro-inflammatory, as judged histologically and in cultured epithelial cells, but increased reactivity to inhaled MCh at some post-exposure time points and affected Na+ transport in airway epithelial cells.


Asunto(s)
Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Exposición Profesional/efectos adversos , Arena/química , Administración por Inhalación , Animales , Polvo , Células Epiteliales/efectos de los fármacos , Fracking Hidráulico/métodos , Masculino , Cloruro de Metacolina/farmacología , Ratas , Ratas Sprague-Dawley , Mucosa Respiratoria/efectos de los fármacos , Dióxido de Silicio/efectos adversos , Tráquea/efectos de los fármacos
5.
Toxicol Appl Pharmacol ; 409: 115282, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33068622

RESUMEN

Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences.


Asunto(s)
Contaminantes Ocupacionales del Aire/efectos adversos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Arena/química , Silicosis/etiología , Tráquea/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Polvo , Fracking Hidráulico/métodos , Masculino , Exposición Profesional/efectos adversos , Neumonía/inducido químicamente , Cuarzo/efectos adversos , Ratas , Ratas Sprague-Dawley , Dióxido de Silicio/efectos adversos
6.
Toxicol Appl Pharmacol ; 323: 16-25, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28315692

RESUMEN

The emission of cerium oxide nanoparticles (CeO2) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO2 induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO2-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO2 (0.15 to 7mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28days after CeO2 (3.5mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO2-exposed rats at 28days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO2 exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO2-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-ß or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO2 exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO2 nanoparticle exposure.


Asunto(s)
Células Epiteliales Alveolares/efectos de los fármacos , Cerio/toxicidad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Fibrosis Pulmonar/inducido químicamente , Actinas/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Líquido del Lavado Bronquioalveolar/química , Forma de la Célula/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Hidroxiprolina/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Péptidos/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Ratas Sprague-Dawley , Medición de Riesgo , Fibras de Estrés/efectos de los fármacos , Fibras de Estrés/metabolismo , Fibras de Estrés/patología , Factores de Tiempo , Factor de Crecimiento Transformador beta/metabolismo
7.
Inhal Toxicol ; 29(7): 322-339, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28967277

RESUMEN

The effects of acute pulmonary coexposures to silica and diesel particulate matter (DPM), which may occur in various mining operations, were investigated in vivo. Rats were exposed by intratracheal instillation (IT) to silica (50 or 233 µg), DPM (7.89 or 50 µg) or silica and DPM combined in phosphate-buffered saline (PBS) or to PBS alone (control). At one day, one week, one month, two months and three months postexposure bronchoalveolar lavage and histopathology were performed to assess lung injury, inflammation and immune response. While higher doses of silica caused inflammation and injury at all time points, DPM exposure alone did not. DPM (50 µg) combined with silica (233 µg) increased inflammation at one week and one-month postexposure and caused an increase in the incidence of fibrosis at one month compared with exposure to silica alone. To assess susceptibility to lung infection following coexposure, rats were exposed by IT to 233 µg silica, 50 µg DPM, a combination of the two or PBS control one week before intratracheal inoculation with 5 × 105 Listeria monocytogenes. At 1, 3, 5, 7 and 14 days following infection, pulmonary immune response and bacterial clearance from the lung were evaluated. Coexposure to DPM and silica did not alter bacterial clearance from the lung compared to control. Although DPM and silica coexposure did not alter pulmonary susceptibility to infection in this model, the study showed that noninflammatory doses of DPM had the capacity to increase silica-induced lung injury, inflammation and onset/incidence of fibrosis.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Pulmón/efectos de los fármacos , Material Particulado/toxicidad , Cuarzo/toxicidad , Emisiones de Vehículos/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Recuento de Células , Citocinas/inmunología , L-Lactato Deshidrogenasa/metabolismo , Listeria monocytogenes/patogenicidad , Listeriosis , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Masculino , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda
8.
J Appl Toxicol ; 36(4): 618-26, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26472246

RESUMEN

Indium-tin oxide (ITO) is used to make transparent conductive coatings for touch-screen and liquid crystal display electronics. Occupational exposures to potentially toxic particles generated during ITO production have increased in recent years as the demand for consumer electronics continues to rise. Previous studies have demonstrated cytotoxicity in vitro and animal models have shown pulmonary inflammation and injury in response to various indium-containing particles. In humans, pulmonary alveolar proteinosis (PAP) and fibrotic interstitial lung disease have been observed in ITO facility workers. However, which indium materials or specific processes in the workplace may be the most toxic to workers is unknown. Here we examined the pulmonary toxicity of three different particle samples that represent real-life worker exposures, as they were collected at various production stages throughout an ITO facility. Indium oxide (In2O3), sintered ITO (SITO) and ventilation dust (VD) particles each caused pulmonary inflammation and damage in rats over a time course (1, 7 and 90 days post-intratracheal instillation), but SITO and VD appeared to induce greater toxicity in rat lungs than In2O3 at a dose of 1 mg per rat. Downstream pathological changes such as PAP and fibrosis were observed in response to all three particles 90 days after treatment, with a trend towards greatest severity in animals exposed to VD when comparing animals that received the same dose. These findings may inform workplace exposure reduction efforts and provide a better understanding of the pathogenesis of an emerging occupational health issue.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Neumonía/patología , Compuestos de Estaño/toxicidad , Animales , Lavado Broncoalveolar , Relación Dosis-Respuesta a Droga , Polvo , Concentración de Iones de Hidrógeno , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Fagocitosis , Neumonía/inducido químicamente , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
9.
Toxicol Appl Pharmacol ; 288(1): 63-73, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26210349

RESUMEN

Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague-Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5mg/kg) treatment at 28days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis.


Asunto(s)
Antiinflamatorios/farmacología , Cerio/toxicidad , Pulmón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Neumonía/inducido químicamente , Fibrosis Pulmonar/inducido químicamente , Dióxido de Silicio/farmacología , Animales , Antiinflamatorios/química , Líquido del Lavado Bronquioalveolar/química , Cerio/química , Colágeno/metabolismo , Citocinas/metabolismo , Citoprotección , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Nanopartículas del Metal/química , Fosfolípidos/metabolismo , Neumonía/metabolismo , Neumonía/patología , Neumonía/prevención & control , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/prevención & control , Proteínas Asociadas a Surfactante Pulmonar/metabolismo , Ratas Sprague-Dawley , Dióxido de Silicio/química , Espectrometría por Rayos X , Propiedades de Superficie , Factores de Tiempo , Inhibidores Tisulares de Metaloproteinasas/metabolismo
10.
Toxicol Appl Pharmacol ; 278(2): 135-47, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24793434

RESUMEN

Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO2) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO2 on the pulmonary system in a rat model. Specific pathogen-free male Sprague-Dawley rats were exposed to CeO2 and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO2 induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO2 and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO2, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP+CeO2 were significantly larger than CeO2 or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP+CeO2 reflects the combination of DEP-exposure plus CeO2-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO2 induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO2 in the combined exposure. Using CeO2 as diesel fuel catalyst may cause health concerns.


Asunto(s)
Cerio/toxicidad , Exposición por Inhalación/efectos adversos , Nanopartículas/toxicidad , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Emisiones de Vehículos/toxicidad , Animales , Cerio/análisis , Interacciones Farmacológicas , Masculino , Nanopartículas/análisis , Material Particulado/análisis , Material Particulado/toxicidad , Ratas , Ratas Sprague-Dawley , Emisiones de Vehículos/análisis
11.
Toxicol Appl Pharmacol ; 262(3): 255-64, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22613087

RESUMEN

Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO(2)) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO(2)-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO(2) in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO(2) by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-ß1 in the fibrotic process were investigated. The results showed that CeO(2) exposure significantly increased fibrotic cytokine TGF-ß1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO(2) induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5mg/kg CeO(2) and euthanized at 28 days post-exposure. Collectively, our studies show that CeO(2) induced fibrotic lung injury in rats, suggesting it may cause potential health effects.


Asunto(s)
Cerio/toxicidad , Nanopartículas/toxicidad , Fibrosis Pulmonar/inducido químicamente , Animales , Líquido del Lavado Bronquioalveolar/citología , Relación Dosis-Respuesta a Droga , Hidroxiprolina/análisis , Pulmón/química , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/ultraestructura , Masculino , Metaloproteinasa 10 de la Matriz/análisis , Metaloproteinasa 2 de la Matriz/análisis , Metaloproteinasa 9 de la Matriz/análisis , Microscopía Electrónica de Transmisión , Osteopontina/análisis , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/análisis
12.
J Toxicol Environ Health A ; 72(8): 560-70, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19267316

RESUMEN

Pulmonary responses to diesel exhaust particles (DEP) exposure are mediated through enhanced production of reactive oxygen species (ROS) and nitric oxide (NO) by alveolar macrophages (AM). The current study examined the differential roles of ROS and NO in DEP-induced lung injury using C57B/6J wild-type (WT) and inducible NO synthase knockout (iNOS KO) mice. Mice exposed by pharyngeal aspiration to DEP or carbon black particles (CB) (35 mg/kg) showed an inflammatory profile that included neutrophil infiltration, increased lactate dehydrogenase (LDH) activity, and elevated albumin content in bronchoalveolar lavage fluid (BALF) at 1, 3, and 7 d postexposure. The organic extract of DEP (DEPE) did not induce an inflammatory response. Comparing WT to iNOS KO mice, the results show that NO enhanced DEP-induced neutrophils infiltration and plasma albumin content in BALF and upregulated the production of the pro-inflammatory cytokine interleukin 12 (IL-12) by AM. DEP-exposed AM from iNOS KO mice displayed diminished production of IL-12 and, in response to ex vivo lipopolysaccharide (LPS) challenge, decreased production of IL-12 but increased production of IL-10 when compared to cells from WT mice. DEP, CB, but not DEPE, induced DNA damage and mitochondria dysfunction in AM, however, that is independent of cellular production of NO. These results demonstrate that DEP-induced immune/inflammatory responses in mice are regulated by both ROS- and NO-mediated pathways. NO did not affect ROS-mediated mitochondrial dysfunction and DNA damage but upregulated IL-12 and provided a counterbalance to the ROS-mediated adaptive stress response that downregulates IL-12 and upregulates IL-10.


Asunto(s)
Enfermedades Mitocondriales/inducido químicamente , Óxido Nítrico Sintasa de Tipo II/fisiología , Óxido Nítrico/toxicidad , Material Particulado/toxicidad , Neumonía/inducido químicamente , Especies Reactivas de Oxígeno/toxicidad , Emisiones de Vehículos/toxicidad , Animales , Disponibilidad Biológica , Líquido del Lavado Bronquioalveolar/citología , Células Cultivadas , Ensayo Cometa , Citocinas/metabolismo , Daño del ADN , L-Lactato Deshidrogenasa/metabolismo , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Transmisión , Enfermedades Mitocondriales/patología , Óxido Nítrico Sintasa de Tipo II/genética , Material Particulado/farmacocinética , Neumonía/patología , Alveolos Pulmonares/patología
13.
J Toxicol Environ Health A ; 71(8): 521-32, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18338287

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are products of incomplete combustion that are commonly inhaled by workers in the dusty trades. Many PAHs are metabolized by cytochrome P-4501A1 (CYP1A1), which may facilitate excretion but may activate pulmonary carcinogens. PAHs also stimulate their own metabolism by inducing CYP1A1. Recent studies suggest that respirable coal dust exposure inhibits induction of pulmonary CYP1A1 using the model PAH beta-naphthoflavone. The effect of the occupational particulate respirable crystalline silica was investigated on PAH-dependent pulmonary CYP1A1 induction. Male Sprague-Dawley rats were exposed to intratracheal silica or vehicle and then intraperitoneal beta-naphthoflavone, a CYP1A1 inducer, and/or phenobarbital, an inducer of hepatic CYP2B1, or vehicle. Beta-naphthoflavone induced pulmonary CYP1A1, but silica attenuated this beta-naphthoflavone-induced CYP1A1 activity and also suppressed the activity of CYP2B1, the major constitutive CYP in rat lung. The magnitude of CYP activity suppression was similar regardless of silica exposure dose within a range of 5 to 20 mg/rat. Phenobarbital and beta-naphthoflavone had no effect on pulmonary CYP2B1 activity. Both enzymatic immunohistochemistry and immunofluorescent staining for CYP1A1 indicated that sites of CYP1A1 induction were nonciliated airway epithelial cells, endothelial cells, and the alveolar septum. Using immunofluorescent colocalization of CYP1A1 with cytokeratin 8, a marker of alveolar type II cells, the proximal alveolar region was the site of both increased alveolar type II cells and decreased proportional CYP1A1 expression in alveolar type II cells. Our findings suggest that in PAH-exposed rat lung, silica is a negative modifier of CYP1A1 induction and CYP2B1 activity.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Citocromo P-450 CYP1A1/metabolismo , Polvo , Material Particulado/efectos adversos , Alveolos Pulmonares/metabolismo , Dióxido de Silicio/efectos adversos , Silicosis/fisiopatología , Animales , Citocromo P-450 CYP1A1/efectos de los fármacos , Citocromo P-450 CYP2B1/efectos de los fármacos , Citocromo P-450 CYP2B1/metabolismo , Modelos Animales de Enfermedad , Inducción Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/administración & dosificación , Exposición por Inhalación/efectos adversos , Masculino , Exposición Profesional/efectos adversos , Alveolos Pulmonares/patología , Ratas , Ratas Sprague-Dawley , beta-naftoflavona/administración & dosificación
14.
J Toxicol Environ Health A ; 70(23): 1967-76, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17966068

RESUMEN

Studies suggested that 15-deoxy-delta-(12,14)-prostaglandin J2 (PGJ2) may exert anti-inflammatory effects, including in the lung. Thus, in vitro studies were conducted to (1) investigate whether PGJ2 inhibited the production of inflammatory mediators from lipopolysaccharide (LPS)-exposed primary rat alveolar macrophages (AM), and (2) investigate possible mechanisms underlying PGJ2-mediated inhibition of inflammatory mediator production. These studies determined that PGJ2 inhibited LPS-induced nitric oxide (NO) production in a concentration- and time-dependent manner. PGJ2-mediated inhibition of NO, as well as of tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-2 (MIP-2), was also determined to be dependent on the time of addition of PGJ2 relative to LPS, and suggested the PGJ2 inhibitory mechanism is an early event. PGJ2 was shown not to interfere with binding or internalization of LPS by AM, indicating this was not responsible for PGJ2 inhibitory effects. Another possible mechanism underlying PGJ2-mediated inhibition was via peroxisome proliferator-activated receptor-gamma (PPAR-gamma). However, biochemical studies suggested that PGJ2-mediated inhibition was not occurring through PPAR-gamma dependent mechanism, and molecular studies further established that both LPS and PGJ2 decrease PPAR-gamma mRNA expression. A third possible mechanism underlying PGJ2-mediated inhibition was by alteration of nuclear factor (NF)-kappaB. Molecular studies confirmed that LPS stimulated NF-kappaB mRNA expression, and PGJ2 reduced this stimulation, which is consistent with PGJ2 effect on LPS-induced production of NO, TNF-alpha and MIP-2. Thus, data in this study established that PGJ2 inhibited LPS-induced inflammatory mediator production in rat AM, and this inhibition is mediated, at least in part, by reducing the expression of NF-kappaB mRNA.


Asunto(s)
Lipopolisacáridos/inmunología , Macrófagos Alveolares/inmunología , FN-kappa B/inmunología , Prostaglandina D2/análogos & derivados , Animales , Líquido del Lavado Bronquioalveolar/citología , Células Cultivadas , Quimiocina CXCL2/inmunología , Macrófagos Alveolares/efectos de los fármacos , Masculino , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Óxido Nítrico/inmunología , Óxido Nítrico/metabolismo , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Prostaglandina D2/inmunología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/inmunología
15.
Nanotoxicology ; 11(8): 1040-1058, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29094619

RESUMEN

Boron nitride nanotubes (BNNTs) are an emerging engineered nanomaterial attracting significant attention due to superior electrical, chemical and thermal properties. Currently, the toxicity profile of this material is largely unknown. Commercial grade BNNTs are composed of a mixture (BNNT-M) of ∼50-60% BNNTs, and ∼40-50% impurities of boron and hexagonal boron nitride. We performed acute in vitro and in vivo studies with commercial grade BNNT-M, dispersed by sonication in vehicle, in comparison to the extensively studied multiwalled carbon nanotube-7 (MWCNT-7). THP-1 wild-type and NLRP3-deficient human monocytic cells were exposed to 0-100 µg/ml and C57BL/6 J male mice were treated with 40 µg of BNNT-M for in vitro and in vivo studies, respectively. In vitro, BNNT-M induced a dose-dependent increase in cytotoxicity and oxidative stress. This was confirmed in vivo following acute exposure increase in bronchoalveolar lavage levels of lactate dehydrogenase, pulmonary polymorphonuclear cell influx, loss in mitochondrial membrane potential and augmented levels of 4-hydroxynonenal. Uptake of this material caused lysosomal destabilization, pyroptosis and inflammasome activation, corroborated by an increase in cathepsin B, caspase 1, increased protein levels of IL-1ß and IL-18 both in vitro and in vivo. Attenuation of these effects in NLRP3-deficient THP-1 cells confirmed NLRP3-dependent inflammasome activation by BNNT-M. BNNT-M induced a similar profile of inflammatory pulmonary protein production when compared to MWCNT-7. Functionally, pretreatment with BNNT-M caused suppression in bacterial uptake by THP-1 cells, an effect that was mirrored in challenged alveolar macrophages collected from exposed mice and attenuated with NLRP3 deficiency. Analysis of cytokines secreted by LPS-challenged alveolar macrophages collected after in vivo exposure to dispersions of BNNT-M showed a differential macrophage response. The observed results demonstrated acute inflammation and toxicity in vitro and in vivo following exposure to sonicated BNNT-M was in part due to NLRP3 inflammasome activation.


Asunto(s)
Compuestos de Boro/toxicidad , Pulmón/efectos de los fármacos , Nanotubos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Inflamación , Pulmón/metabolismo , Pulmón/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tamaño de la Partícula , Piroptosis/efectos de los fármacos
16.
Environ Health Perspect ; 114(8): 1253-8, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16882535

RESUMEN

Diesel exhaust particles (DEPs) have been shown to activate oxidant generation by alveolar macrophages (AMs), alter xenobiotic metabolic pathways, and modify the balance of pro-antiinflammatory cytokines. In this study we investigated the role of nitric oxide (NO) in DEP-mediated and DEP organic extract (DEPE) -mediated inflammatory responses and evaluated the interaction of inducible NO synthase (iNOS) and cytochrome P450 1A1 (CYP1A1). Male Sprague-Dawley rats were intratracheally (IT) instilled with saline, DEPs (35 mg/kg), or DEPEs (equivalent to 35 mg DEP/kg), with or without further treatment with an iNOS inhibitor, aminoguanidine (AG; 100 mg/kg), by intraperitoneal injection 30 min before and 3, 6, and 9 hr after IT exposure. At 1 day postexposure, both DEPs and DEPEs induced iNOS expression and NO production by AMs. AG significantly lowered DEP- and DEPE-induced iNOS activity but not the protein level while attenuating DEPE- but not DEP-mediated pulmonary inflammation, airway damage, and oxidant generation by AMs. DEP or DEPE exposure resulted in elevated secretion of both interleukin (IL) -12 and IL-10 by AMs. AG significantly reduced DEP- and DEPE-activated AMs in IL-12 production. In comparison, AG inhibited IL-10 production by DEPE-exposed AMs but markedly increased its production by DEP-exposed AMs, suggesting that NO differentially regulates the pro- and antiinflammatory cytokine balance in the lung. Both DEPs and DEPEs induced CYP1A1 expression. AG strongly inhibited CYP1A1 activity and lung S9 activity-dependent 2-aminoanthracene mutagenicity. These studies show that NO plays a major role in DEPE-induced lung inflammation and CYP-dependent mutagen activation but a lesser role in particulate-induced inflammatory damage.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Citocromo P-450 CYP1A1/fisiología , Gasolina/toxicidad , Mutágenos , Óxido Nítrico Sintasa de Tipo II/fisiología , Neumonía/enzimología , Neumonía/etiología , Emisiones de Vehículos/toxicidad , Animales , Células Cultivadas , Citocromo P-450 CYP1A1/biosíntesis , Citocromo P-450 CYP1A1/metabolismo , Citocinas/análisis , Técnicas In Vitro , L-Lactato Deshidrogenasa/metabolismo , Luminiscencia , Masculino , Microsomas/enzimología , Microsomas/metabolismo , Pruebas de Mutagenicidad , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Ácido Peroxinitroso/metabolismo , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Salmonella typhimurium/genética , Fracciones Subcelulares/enzimología , Fracciones Subcelulares/metabolismo
17.
Environ Health Perspect ; 114(3): 412-9, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16507465

RESUMEN

The epidemiologic association between pulmonary exposure to ambient particulate matter (PM) and cardiovascular dysfunction is well known, but the systemic mechanisms that drive this effect remain unclear. We have previously shown that acute pulmonary exposure to PM impairs or abolishes endothelium-dependent arteriolar dilation in the rat spinotrapezius muscle. The purpose of this study was to further characterize the effect of pulmonary PM exposure on systemic microvascular function and to identify local inflammatory events that may contribute to these effects. Rats were intratracheally instilled with residual oil fly ash (ROFA) or titanium dioxide at 0.1 or 0.25 mg/rat 24 hr before measurement of pulmonary and systemic microvascular responses. In vivo microscopy of the spinotrapezius muscle was used to study systemic arteriolar responses to intraluminal infusion of the Ca2+ ionophore A23187 or iontophoretic abluminal application of the adrenergic agonist phenylephrine (PHE). Leukocyte rolling and adhesion were quantified in venules paired with the studied arterioles. Histologic techniques were used to assess pulmonary inflammation, characterize the adherence of leukocytes to systemic venules, verify the presence of myeloperoxidase (MPO) in the systemic microvascular wall, and quantify systemic microvascular oxidative stress. In the lungs of rats exposed to ROFA or TiO2, changes in some bronchoalveolar lavage markers of inflammation were noted, but an indication of cellular damage was not found. In rats exposed to 0.1 mg ROFA, focal alveolitis was evident, particularly at sites of particle deposition. Exposure to either ROFA or TiO2 caused a dose-dependent impairment of endothelium-dependent arteriolar dilation. However, exposure to these particles did not affect microvascular constriction in response to PHE. ROFA and TiO2 exposure significantly increased leukocyte rolling and adhesion in paired venules, and these cells were positively identified as polymorphonuclear leukocytes (PMNLs). In ROFA- and TiO2-exposed rats, MPO was found in PMNLs adhering to the systemic microvascular wall. Evidence suggests that some of this MPO had been deposited in the microvascular wall. There was also evidence for oxidative stress in the microvascular wall. These results indicate that after PM exposure, the impairment of endothelium-dependent dilation in the systemic microcirculation coincides with PMNL adhesion, MPO deposition, and local oxidative stress. Collectively, these microvascular observations are consistent with events that contribute to the disruption of the control of peripheral resistance and/or cardiac dysfunction associated with PM exposure.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Albúminas/análisis , Animales , Arteriolas/efectos de los fármacos , Arteriolas/fisiopatología , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Calcimicina/farmacología , Carbono/toxicidad , Ceniza del Carbón , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , L-Lactato Deshidrogenasa/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Masculino , Neutrófilos/efectos de los fármacos , Neutrófilos/enzimología , Material Particulado , Peroxidasa/metabolismo , Fenilefrina/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Titanio/toxicidad , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
18.
Nanotoxicology ; 10(7): 992-1000, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26898289

RESUMEN

Cerium (Ce) is becoming a popular metal for use in electrochemical applications. When in the form of cerium oxide (CeO2), Ce can exist in both 3 + and 4 + valence states, acting as an ideal catalyst. Previous in vitro and in vivo evidence have demonstrated that CeO2 has either anti- or pro-oxidant properties, possibly due to the ability of the nanoparticles to transition between valence states. Therefore, we chose to chemically modify the nanoparticles to shift the valence state toward 3+. During the hydrothermal synthesis process, 10 mol% gadolinium (Gd) and 20 mol% Gd, were substituted into the lattice of the CeO2 nanoparticles forming a perfect solid solution with various A-site valence states. These two Gd-doped CeO2 nanoparticles were compared to pure CeO2 nanoparticles. Preliminary characteristics indicated that doping results in minimal size and zeta potential changes but alters valence state. Following characterization, male Sprague-Dawley rats were exposed to 0.5 or 1.0 mg/kg nanoparticles via a single intratracheal instillation. Animals were sacrificed and bronchoalveolar lavage fluid and various tissues were collected to determine the effect of valence state and oxygen vacancies on toxicity 1-, 7-, or 84-day post-exposure. Results indicate that damage, as measured by elevations in lactate dehydrogenase, occurred within 1-day post-exposure and was sustained 7-day post-exposure, but subsided to control levels 84-day post-exposure. Furthermore, no inflammatory signaling or lipid peroxidation occurred following exposure with any of the nanoparticles. Our results implicate that valence state has a minimal effect on CeO2 nanoparticle toxicity in vivo.


Asunto(s)
Cerio/química , Cerio/toxicidad , Pulmón/efectos de los fármacos , Nanopartículas/química , Nanopartículas/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/química , Relación Dosis-Respuesta a Droga , Gadolinio/química , Instilación de Medicamentos , Peroxidación de Lípido/efectos de los fármacos , Pulmón/metabolismo , Masculino , Oxígeno/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
19.
Environ Health Perspect ; 113(5): 612-7, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15866772

RESUMEN

Diesel exhaust particles (DEPs) at three concentrations (5, 35, and 50 mg/kg body weight) were instilled into rats intratracheally. We studied gene expression at 1, 7, and 30 days postexposure in cells obtained by bronchoalveolar lavage (BAL) and in lung tissue. Using real-time reverse transcriptase-polymerase chain reaction (RT-PCR), we measured the mRNA levels of eight genes [interleukin (IL)-1beta, IL-6, IL-10, iNOS (inducible nitric oxide synthase), MCP-1 (monocyte chemoattractant protein-1), MIP-2 (macrophage inflammatory protein-2), TGF-beta1 (transforming growth factor-beta1), and TNF-alpha (tumor necrosis factor-alpha )] in BAL cells and four genes [IL-6, ICAM-1 (intercellular adhesion molecule-1), GM-CSF (granulocyte/macrophage-colony stimulating factor), and RANTES (regulated upon activation normal T cell expressed and secreted)] in lung tissue. In BAL cells on day 1, high-dose exposure induced a significant up-regulation of IL-1beta, iNOS, MCP-1, and MIP-2 but no change in IL-6, IL-10, TGF-beta1, and TNF-alpha mRNA levels. There was no change in the mRNA levels of IL-6, RANTES, ICAM-1, and GM-CSF in lung tissue. Nitric oxide production and levels of MCP-1 and MIP-2 were increased in the 24-hr culture media of alveolar macrophages (AMs) obtained on day 1. IL-6, MCP-1, and MIP-2 levels were also elevated in the BAL fluid. BAL fluid also showed increases in albumin and lactate dehydrogenase. The cellular content in BAL fluid increased at all doses and at all time periods, mainly due to an increase in polymorphonuclear leukocytes. In vitro studies in AMs and cultured lung fibroblasts showed that lung fibroblasts are a significant source of IL-6 and MCP-1 in the lung.


Asunto(s)
Citocinas/biosíntesis , Perfilación de la Expresión Génica , Inflamación , Enfermedades Pulmonares/etiología , Emisiones de Vehículos/efectos adversos , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Técnicas de Cultivo de Célula , Citocinas/inmunología , Fibroblastos , Enfermedades Pulmonares/inmunología , Macrófagos Alveolares/inmunología , Óxido Nítrico/análisis , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
20.
Toxicol Sci ; 88(1): 73-81, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16107554

RESUMEN

Studies have shown that exposure to diesel exhaust particles (DEP) suppresses pulmonary host defense against bacterial infection. The present study was carried out to characterize whether DEP exposure exerts a sustained effect in which inhaled DEP increase the susceptibility of the lung to bacterial infection occurring at a later time. Brown Norway rats were exposed to filtered air or DEP by inhalation at a dose of 21.2 +/- 2.3 mg/m3, 4 h/day for 5 days, and intratracheally instilled with saline or 100,000 Listeria monocytogenes (Listeria) 7 days after the final DEP exposure. Bacterial growth and cellular responses to DEP and Listeria exposures were examined at 3 and 7 days post-infection. The results showed that inhaled DEP prolonged the growth of bacteria, administered 7 days post DEP exposure, in the lung as compared to the air-exposed controls. Pulmonary responses to Listeria infection were characterized by increased production of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, IL-12, and IL-10 by alveolar macrophages (AM) and increased presence of T lymphocytes and their CD4+ and CD8+ subsets in lung draining lymph nodes that secreted elevated levels of IL-2, IL-6, IL-10, and interferon (IFN)-gamma. Diesel exhaust particles were found to inhibit Listeria-induced production of IL-1beta and TNF-alpha, which are responsible for the innate immunity, and IL-12, which initiates the development of T helper (Th)1 responses, but enhance Listeria-induced AM production of IL-10, which prolongs Listeria survival in these phagocytes. The dual action of DEP on AM production of IL-12 and IL-10 correlated with an inhibition of the development of bacteria-specific T lymphocytes by DEP. Cytokine production by lymphocytes from DEP- and Listeria-exposed rats showed a marked decrease in the production of IL-2, IL-10, and IFN-gamma compared to Listeria infection alone, suggesting either that DEP inhibit the production of cytokines by lymphocytes or that these lymphocytes contained T-cell subsets that are different from those of Listeria infection alone and less effective in mediating Th1 immune responses. This study demonstrates that inhaled DEP, after a 7-day resting period, increase the susceptibility of the lung to bacterial infection occurring at a later time by inhibiting macrophage immune function and suppressing the development of T-cell-mediated immune responses. The results support the epidemiological observations that exposure to DEP may be responsible for the pulmonary health effects on humans.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Inmunidad Celular/efectos de los fármacos , Exposición por Inhalación , Listeriosis/inmunología , Linfocitos T/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Animales , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar/citología , Citocinas/metabolismo , Listeria monocytogenes/inmunología , Listeria monocytogenes/patogenicidad , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Masculino , Ratas , Ratas Endogámicas BN , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA