RESUMEN
Microbiotas are an adaptable component of ecosystems, including human ecology. Microorganisms influence the chemistry of their specialized niche, such as the human gut, as well as the chemistry of distant surroundings, such as other areas of the body. Metabolomics based on mass spectrometry (MS) is one of the primary methods for detecting and identifying small compounds generated by the human microbiota, as well as understanding the functional significance of these microbial metabolites. This book chapter gives basic knowledge on the kinds of untargeted mass spectrometry as well as the data types that may be generated in the context of microbiome study. While data analysis remains a barrier, the emphasis is on data analysis methodologies and integrative analysis, particularly the integration of microbiome sequencing data. Mass spectrometry (MS)-based techniques have resurrected culture methods for studying the human gut microbiota, filling in the gaps left by high-throughput sequencing methods in terms of culturing minor populations.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
Proteomics has grown in importance in molecular sciences because it gives vital information on protein identification, expression levels, and alteration. Cancer is one of the world's major causes of death and is the major focus of much research. Cancer risk is determined by hereditary variables as well as the body's immunological condition. Probiotics have increasing medical importance due to their therapeutic influence on the human body in the prevention and treatment of numerous chronic illnesses, including cancer, with no adverse effects. Several anticancer, anti-inflammatory, and chemopreventive probiotics are studied using different proteomic approaches like two-dimensional gel electrophoresis, liquid chromatography-mass spectrometry, and matrix-assisted laser desorption/ionization mass spectrometry. To gain relevant information about probiotic characteristics, data from the proteomic analysis are evaluated and processed using bioinformatics pipelines. Proteomic studies showed the significance of different proteomic approaches in characterization, comparing strains, and determination of oxidative stress of different probiotics. Moreover, proteomic approaches identified different proteins that are involved in glucose metabolism and the formation of cell walls or cell membranes, and the differences in the expression of critical enzymes in the HIF-1 signaling pathway, starch, and sucrose metabolism, and other critical metabolic pathways.
Asunto(s)
Neoplasias , Probióticos , Humanos , Proteínas Bacterianas/metabolismo , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Probióticos/uso terapéutico , Neoplasias/prevención & control , Electroforesis en Gel BidimensionalRESUMEN
Background & objectives: During the COVID-19 pandemic, the death rate was reportedly 5-8 fold lower in India which is densely populated as compared to less populated western countries. The aim of this study was to investigate whether dietary habits were associated with the variations in COVID-19 severity and deaths between western and Indian population at the nutrigenomics level. Methods: In this study nutrigenomics approach was applied. Blood transcriptome of severe COVID-19 patients from three western countries (showing high fatality) and two datasets from Indian patients were used. Gene set enrichment analyses were performed for pathways, metabolites, nutrients, etc., and compared for western and Indian samples to identify the food- and nutrient-related factors, which may be associated with COVID-19 severity. Data on the daily consumption of twelve key food components across four countries were collected and a correlation between nutrigenomics analyses and per capita daily dietary intake was investigated. Results: Distinct dietary habits of Indians were observed, which may be associated with low death rate from COVID-19. Increased consumption of red meat, dairy products and processed foods by western populations may increase the severity and death rate by activating cytokine storm-related pathways, intussusceptive angiogenesis, hypercapnia and enhancing blood glucose levels due to high contents of sphingolipids, palmitic acid and byproducts such as CO2 and lipopolysaccharide (LPS). Palmitic acid also induces ACE2 expression and increases the infection rate. Coffee and alcohol that are highly consumed in western countries may increase the severity and death rates from COVID-19 by deregulating blood iron, zinc and triglyceride levels. The components of Indian diets maintain high iron and zinc concentrations in blood and rich fibre in their foods may prevent CO2 and LPS-mediated COVID-19 severity. Regular consumption of tea by Indians maintains high high-density lipoprotein (HDL) and low triglyceride in blood as catechins in tea act as natural atorvastatin. Importantly, regular consumption of turmeric in daily food by Indians maintains strong immunity and curcumin in turmeric may prevent pathways and mechanisms associated with SARS-CoV-2 infection and COVID-19 severity and lowered the death rate. Interpretation & conclusions: Our results suggest that Indian food components suppress cytokine storm and various other severity related pathways of COVID-19 and may have a role in lowering severity and death rates from COVID-19 in India as compared to western populations. However, large multi-centered case-control studies are required to support our current findings.
Asunto(s)
COVID-19 , Ingredientes Alimentarios , Humanos , Nutrigenómica , Dióxido de Carbono , Lipopolisacáridos , Pandemias , Síndrome de Liberación de Citoquinas , Ácido Palmítico , SARS-CoV-2 , Dieta/métodos , Conducta Alimentaria , Zinc , Té , Hierro , TriglicéridosRESUMEN
With the significant growth of patients suffering from neurodegenerative diseases (NDs), novel classes of compounds targeting monoamine oxidase type B (MAO-B) are promptly emerging as distinguished structures for the treatment of the latter. As a promising function of computer-aided drug design (CADD), structure-based virtual screening (SBVS) is being heavily applied in processes of drug discovery and development. The utilization of molecular docking, as a helping tool for SBVS, is providing essential data about the poses and the occurring interactions between ligands and target molecules. The current work presents a brief discussion of the role of MAOs in the treatment of NDs, insight into the advantages and drawbacks of docking simulations and docking software, and a look into the active sites of MAO-A and MAO-B and their main characteristics. Thereafter, we report new chemical classes of MAO-B inhibitors and the essential fragments required for stable interactions focusing mainly on papers published in the last five years. The reviewed cases are separated into several chemically distinct groups. Moreover, a modest table for rapid revision of the revised works including the structures of the reported inhibitors together with the utilized docking software and the PDB codes of the crystal targets applied in each study is provided. Our work could be beneficial for further investigations in the search for novel, effective, and selective MAO-B inhibitors.
Asunto(s)
Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Humanos , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Simulación del Acoplamiento Molecular , Monoaminooxidasa/metabolismo , Descubrimiento de Drogas , Diseño de Fármacos , Relación Estructura-ActividadRESUMEN
We investigated whether a set of phylogeographical tracked emergent events of Orthocoronavirinae were related to developed, urban and polluted environments worldwide. We explored coronavirus records in response to climate (rainfall parameters), population density, CO2 emission, Human Developmental Index (HDI) and deforestation. We contrasted environmental characteristics from regions with spillovers or encounters of wild Orthocoronavirinae against adjacent areas having best-preserved conditions. We used all complete sequenced CoVs genomes deposited in NCBI and GISAID databases until January 2021. Except for Deltacoronavirus, concentrated in Hong Kong and in birds, the other three genera were scattered all over the planet, beyond the original distribution of the subfamily, and found in humans, mammals, fishes and birds, wild or domestic. Spillovers and presence in wild animals were only reported in developed/densely populated places. We found significantly more occurrences reported in places with higher HDI, CO2 emission, or population density, along with more rainfall and more accentuated seasonality. Orthocoronavirinae occurred in areas with significantly higher human populations, CO2 emissions and deforestation rates than in adjacent locations. Intermediately disturbed ecosystems seemed more vulnerable for Orthocoronavirinae emergence than forested regions in frontiers of deforestation. Sadly, people experiencing poverty in an intensely consumerist society are the most vulnerable.
Asunto(s)
Infecciones por Coronavirus , Coronavirus , Animales , Dióxido de Carbono , Conservación de los Recursos Naturales , Ecosistema , Humanos , MamíferosRESUMEN
The coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS- CoV-2) with an estimated fatality rate of less than 1%. The SARS-CoV-2 accessory proteins ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10 possess putative functions to manipulate host immune mechanisms. These involve interferons, which appear as a consensus function, immune signaling receptor NLRP3 (NLR family pyrin domain-containing 3) inflammasome, and inflammatory cytokines such as interleukin 1ß (IL-1ß) and are critical in COVID-19 pathology. Outspread variations of each of the six accessory proteins were observed across six continents of all complete SARS-CoV-2 proteomes based on the data reported before November 2020. A decreasing order of percentage of unique variations in the accessory proteins was determined as ORF3a > ORF8 > ORF7a > ORF6 > ORF10 > ORF7b across all continents. The highest and lowest unique variations of ORF3a were observed in South America and Oceania, respectively. These findings suggest that the wide variations in accessory proteins seem to affect the pathogenicity of SARS-CoV-2.
Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Proteínas Virales/genética , Proteínas Viroporinas/genética , COVID-19/patología , Variación Genética , Humanos , Filogenia , SARS-CoV-2/patogenicidadRESUMEN
Effective cancer treatment is an urgent need due to the rising incidence of cancer. One of the most promising future strategies in cancer treatment is using microorganisms as cancer indicators, prophylactic agents, immune activators, vaccines or vectors in antitumor therapy. The success of bacteria-mediated chemotherapy will be dependent on the balance of therapeutic benefit and the control of bacterial infection in the body. Additionally, protozoans and viruses have the potential to be used in cancer therapy. This review summarizes how these microorganisms interact with tumor microenvironments and the challenges of a 'bugs as drugs' approach in cancer therapy. Several standpoints are discussed, such as bacteria as vectors for gene therapy that shuttle therapeutic compounds into tumor tissues, their intrinsic antitumor activities and their combination with chemotherapy or radiotherapy. Bug-based cancer therapy is a two-edged sword and we need to find the opportunities by overcoming the challenges.
Microbe-based cancer treatment strives to address urgent healthcare needs in patients experiencing difficult-to-treat cancers by using tumor-specific infectious microbes. Due to the ease of microbial culturing, microbes can be self-regenerating cancer therapeutics. Despite the fact that bacteria are usually believed to be the primary cause of cancer, the scientific literature has revealed exciting data indicating that bacteria might be efficient cancer prophylactic and therapeutic agents and ideal carriers for targeted cancer therapy. Advanced molecular engineering has recently been applied to bacterial therapy, resulting in increased efficacy with fewer adverse effects.
Asunto(s)
Neoplasias , Bacterias , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Microambiente TumoralRESUMEN
Various lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have contributed to prolongation of the Coronavirus Disease 2019 (COVID-19) pandemic. Several non-synonymous mutations in SARS-CoV-2 proteins have generated multiple SARS-CoV-2 variants. In our previous report, we have shown that an evenly uneven distribution of unique protein variants of SARS-CoV-2 is geo-location or demography-specific. However, the correlation between the demographic transmutability of the SARS-CoV-2 infection and mutations in various proteins remains unknown due to hidden symmetry/asymmetry in the occurrence of mutations. This study tracked how these mutations are emerging in SARS-CoV-2 proteins in six model countries and globally. In a geo-location, considering the mutations having a frequency of detection of at least 500 in each SARS-CoV-2 protein, we studied the country-wise percentage of invariant residues. Our data revealed that since October 2020, highly frequent mutations in SARS-CoV-2 have been observed mostly in the Open Reading Frame (ORF) 7b and ORF8, worldwide. No such highly frequent mutations in any of the SARS-CoV-2 proteins were found in the UK, India, and Brazil, which does not correlate with the degree of transmissibility of the virus in India and Brazil. However, we have found a signature that SARS-CoV-2 proteins were evolving at a higher rate, and considering global data, mutations are detected in the majority of the available amino acid locations. Fractal analysis of each protein's normalized factor time series showed a periodically aperiodic emergence of dominant variants for SARS-CoV-2 protein mutations across different countries. It was noticed that certain high-frequency variants have emerged in the last couple of months, and thus the emerging SARS-CoV-2 strains are expected to contain prevalent mutations in the ORF3a, membrane, and ORF8 proteins. In contrast to other beta-coronaviruses, SARS-CoV-2 variants have rapidly emerged based on demographically dependent mutations. Characterization of the periodically aperiodic nature of the demographic spread of SARS-CoV-2 variants in various countries can contribute to the identification of the origin of SARS-CoV-2.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , IncertidumbreRESUMEN
Mycoplasma genitalium is an obligate intracellular bacterium that is responsible for several sexually transmitted infections, including non-gonococcal urethritis in men and several inflammatory reproductive tract syndromes in women. Here, we applied subtractive genomics and reverse vaccinology approaches for in silico prediction of potential vaccine and drug targets against five strains of M. genitalium. We identified 403 genes shared by all five strains, from which 104 non-host homologous proteins were selected, comprising of 44 exposed/secreted/membrane proteins and 60 cytoplasmic proteins. Based on the essentiality, functionality, and structure-based binding affinity, we finally predicted 19 (14 novel) putative vaccine and 7 (2 novel) candidate drug targets. The docking analysis showed six molecules from the ZINC database as promising drug candidates against the identified targets. Altogether, both vaccine candidates and drug targets identified here may contribute to the future development of therapeutic strategies to control the spread of M. genitalium worldwide.
Asunto(s)
Mycoplasma genitalium , Vacunas , Femenino , Genómica , Humanos , Masculino , Mycoplasma genitalium/genética , VacunologíaRESUMEN
Kombucha is a multispecies microbial ecosystem mainly composed of acetic acid bacteria and osmophilic acid-tolerant yeasts, which is used to produce a probiotic drink. Furthermore, Kombucha Mutualistic Community (KMC) has been recently proposed to be used during long space missions as both a living functional fermented product to improve astronauts' health and an efficient source of bacterial nanocellulose. In this study, we compared KMC structure and functions before and after samples were exposed to the space/Mars-like environment outside the International Space Station in order to investigate the changes related to their re-adaptation to Earth-like conditions by shotgun metagenomics, using both diversity and functional analyses of Community Ecology and Complex Networks approach. Our study revealed that the long-term exposure to space/Mars-like conditions on low Earth orbit may disorganize the KMC to such extent that it will not restore the initial community structure; however, KMC core microorganisms of the community were maintained. Nonetheless, there were no significant differences in the community functions, meaning that the KMC communities are ecologically resilient. Therefore, despite the extremely harsh conditions, key KMC species revived and provided the community with the genetic background needed to survive long periods of time under extraterrestrial conditions.
Asunto(s)
Medio Ambiente Extraterrestre , Vuelo Espacial , Planeta Tierra , Ecosistema , Metagenoma , MetagenómicaRESUMEN
The mortality and morbidity rates for prostate cancer have recently increased to alarming levels, rising higher than lung cancer. Due to a lack of drug targets and molecular probes, existing theranostic techniques are limited. Human LIN28A and its paralog LIN28B overexpression are associated with a number of tumors resulting in a remarkable increase in cancer aggression and poor prognoses. The current review aims to highlight recent work identifying the key roles of LIN28A and LIN28B in prostate cancer, and to instigate further preclinical and clinical research in this important area.
Asunto(s)
Terapia Molecular Dirigida , Medicina de Precisión , Neoplasias de la Próstata/terapia , Proteínas de Unión al ARN/metabolismo , Humanos , Masculino , Neoplasias de la Próstata/patologíaRESUMEN
Staphylococcus aureus (S. aureus) is a highly versatile Gram-positive bacterium that is carried asymptomatically by up to 30% of healthy people, while being a major cause of healthcare-associated infections, making it a worldwide problem in clinical medicine. The adaptive evolution of S. aureus strains is demonstrated by its remarkable capacity to promptly develop high resistance to multiple antibiotics, thus limiting treatment choice. Nowadays, there is a continuous demand for an alternative to the use of antibiotics for S. aureus infections and a strategy to control the spread or to kill phylogenetically related strains. In this scenario, bacteriocins fit as with a promising and interesting alternative. These molecules are produced by a range of bacteria, defined as ribosomally synthesized peptides with bacteriostatic or bactericidal activity against a wide range of pathogens. This work reviews ascertained the main antibiotic-resistance mechanisms of S. aureus strains and the current, informative content concerning the applicability of the use of bacteriocins overlapping the use of conventional antibiotics in the context of S. aureus infections. Besides, we highlight the possible application of these biomolecules on an industrial scale in future work.
Asunto(s)
Bacteriocinas , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Grampositivas , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureusRESUMEN
Cardiac glycosides (CGs) have a long history of treating cardiac diseases. However, recent reports have suggested that CGs also possess anticancer and antiviral activities. The primary mechanism of action of these anticancer agents is by suppressing the Na+/k+-ATPase by decreasing the intracellular K+ and increasing the Na+ and Ca2+. Additionally, CGs were known to act as inhibitors of IL8 production, DNA topoisomerase I and II, anoikis prevention and suppression of several target genes responsible for the inhibition of cancer cell proliferation. Moreover, CGs were reported to be effective against several DNA and RNA viral species such as influenza, human cytomegalovirus, herpes simplex virus, coronavirus, tick-borne encephalitis (TBE) virus and Ebola virus. CGs were reported to suppress the HIV-1 gene expression, viral protein translation and alters viral pre-mRNA splicing to inhibit the viral replication. To date, four CGs (Anvirzel, UNBS1450, PBI05204 and digoxin) were in clinical trials for their anticancer activity. This review encapsulates the current knowledge about CGs as anticancer and antiviral drugs in isolation and in combination with some other drugs to enhance their efficiency. Further studies of this class of biomolecules are necessary to determine their possible inhibitory role in cancer and viral diseases.
Asunto(s)
Antineoplásicos/farmacología , Antivirales/farmacología , Glicósidos Cardíacos/farmacología , Animales , Autofagia/efectos de los fármacos , Ensayos Clínicos como Asunto , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Factores Inmunológicos/farmacología , Transducción de Señal/efectos de los fármacosRESUMEN
BACKGROUND: Iron is an essential micronutrient for the growth and development of virtually all living organisms, playing a pivotal role in the proliferative capability of many bacterial pathogens. The impact that the bioavailability of iron has on the transcriptional response of bacterial species in the CMNR group has been widely reported for some members of the group, but it hasn't yet been as deeply explored in Corynebacterium pseudotuberculosis. Here we describe for the first time a comprehensive RNA-seq whole transcriptome analysis of the T1 wild-type and the Cp13 mutant strains of C. pseudotuberculosis under iron restriction. The Cp13 mutant strain was generated by transposition mutagenesis of the ciuA gene, which encodes a surface siderophore-binding protein involved in the acquisition of iron. Iron-regulated acquisition systems are crucial for the pathogenesis of bacteria and are relevant targets to the design of new effective therapeutic approaches. RESULTS: Transcriptome analyses showed differential expression in 77 genes within the wild-type parental T1 strain and 59 genes in Cp13 mutant under iron restriction. Twenty-five of these genes had similar expression patterns in both strains, including up-regulated genes homologous to the hemin uptake hmu locus and two distinct operons encoding proteins structurally like hemin and Hb-binding surface proteins of C. diphtheriae, which were remarkably expressed at higher levels in the Cp13 mutant than in the T1 wild-type strain. These hemin transport protein genes were found to be located within genomic islands associated with known virulent factors. Down-regulated genes encoding iron and heme-containing components of the respiratory chain (including ctaCEF and qcrCAB genes) and up-regulated known iron/DtxR-regulated transcription factors, namely ripA and hrrA, were also identified differentially expressed in both strains under iron restriction. CONCLUSION: Based on our results, it can be deduced that the transcriptional response of C. pseudotuberculosis under iron restriction involves the control of intracellular utilization of iron and the up-regulation of hemin acquisition systems. These findings provide a comprehensive analysis of the transcriptional response of C. pseudotuberculosis, adding important understanding of the gene regulatory adaptation of this pathogen and revealing target genes that can aid the development of effective therapeutic strategies against this important pathogen.
Asunto(s)
Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/metabolismo , Perfilación de la Expresión Génica , Deficiencias de Hierro , Corynebacterium pseudotuberculosis/crecimiento & desarrollo , Corynebacterium pseudotuberculosis/fisiología , Redes Reguladoras de Genes , Islas Genómicas/genética , Viabilidad Microbiana/genética , Mutación , Transcripción GenéticaRESUMEN
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders related to aging. Though several risk factors are shared between these two diseases, the exact relationship between them is still unknown. In this paper, we analyzed how these two diseases relate to each other from the genomic, epigenomic, and transcriptomic viewpoints. Using an extensive literature mining, we first accumulated the list of genes from major genome-wide association (GWAS) studies. Based on these GWAS studies, we observed that only one gene (HLA-DRB5) was shared between AD and PD. A subsequent literature search identified a few other genes involved in these two diseases, among which SIRT1 seemed to be the most prominent one. While we listed all the miRNAs that have been previously reported for AD and PD separately, we found only 15 different miRNAs that were reported in both diseases. In order to get better insights, we predicted the gene co-expression network for both AD and PD using network analysis algorithms applied to two GEO datasets. The network analysis revealed six clusters of genes related to AD and four clusters of genes related to PD; however, there was very low functional similarity between these clusters, pointing to insignificant similarity between AD and PD even at the level of affected biological processes. Finally, we postulated the putative epigenetic regulator modules that are common to AD and PD.
Asunto(s)
Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad , Enfermedad de Parkinson/genética , Redes Reguladoras de Genes , Cadenas HLA-DRB5/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Sirtuina 1/genéticaRESUMEN
BACKGROUND: Corynebacterium pseudotuberculosis is classified into two biovars, nitrate-negative biovar Ovis which is the etiologic agent of caseous lymphadenitis in small ruminants and nitrate-positive biovar Equi, which causes abscesses and ulcerative lymphangitis in equines. The aim of this study was to develop a quadruplex PCR assay that would allow simultaneous detection and biovar-typing of C. pseudotuberculosis. METHODS: In the present study, genomes of C. pseudotuberculosis strains were used to identify the genes involved in the nitrate reduction pathway to improve a species identification three-primer multiplex PCR assay. The nitrate reductase gene (narG) was included in the PCR assay along with the 16S, rpoB and pld genes to enhance the diagnosis of the multiplex PCR at biovar level. RESULTS: A novel quadruplex PCR assay for C. pseudotuberculosis species and biovar identification was developed. The results of the quadruplex PCR of 348 strains, 346 previously well-characterized clinical isolates of C. pseudotuberculosis from different hosts (goats, sheep, horse, cattle, buffalo, llamas and humans), the vaccine strain 1002 and the type strain ATCC 19410T, were compared to the results of nitrate reductase identification by biochemical test. The McNemar's Chi-squared test used to compare the two methods used for C. pseudotuberculosis biovar identification showed no significant difference (P = 0.75) [95% CI for odds ratio (0.16-6.14)] between the quadruplex PCR and the nitrate biochemical test. Concordant results were observed for 97.13% (338 / 348) of the tested strains and the kappa value was 0.94 [95% CI (0.90-0.98)]. CONCLUSIONS: The ability of the quadruplex assay to discriminate between C. pseudotuberculosis biovar Ovis and Equi strains enhances its usefulness in the clinical microbiology laboratory.
Asunto(s)
Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Corynebacterium pseudotuberculosis/clasificación , ADN Bacteriano/genética , Genoma Bacteriano , Especificidad de la EspecieRESUMEN
Sexually transmitted infections (STIs) are caused by a wide variety of bacteria, viruses, and parasites that are transmitted from one person to another primarily by vaginal, anal, or oral sexual contact. Syphilis is a serious disease caused by a sexually transmitted infection. Syphilis is caused by the bacterium Treponema pallidum subspecies pallidum. Treponema pallidum (T. pallidum) is a motile, gram-negative spirochete, which can be transmitted both sexually and from mother to child, and can invade virtually any organ or structure in the human body. The current worldwide prevalence of syphilis emphasizes the need for continued preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine targets and putative drugs against syphilis disease using reverse vaccinology and subtractive genomics. We compared 13 strains of T. pallidum using T. pallidum Nichols as the reference genome. Using an in silicoapproach, four pathogenic islands were detected in the genome of T. pallidum Nichols. We identified 15 putative antigenic proteins and sixdrug targets through reverse vaccinology and subtractive genomics, respectively, which can be used as candidate therapeutic targets in the future.
Asunto(s)
Antígenos Bacterianos/inmunología , Vacunas Bacterianas/inmunología , Simulación por Computador , Mapeo Epitopo , Sífilis/prevención & control , Treponema pallidum/inmunología , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Vacunas Bacterianas/genética , Biología Computacional/métodos , Mapeo Epitopo/métodos , Genoma Bacteriano , Islas Genómicas , Genómica/métodos , Modelos Moleculares , Relación Estructura-Actividad , Treponema pallidum/genéticaRESUMEN
BACKGROUND: The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. RESULTS: In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. CONCLUSION: Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several projects in laboratories. SIMBA source code is available to download and install in local webservers at http://ufmg-simba.sourceforge.net .
Asunto(s)
Bacterias/genética , Biología Computacional/métodos , Minería de Datos/métodos , Genoma Bacteriano , Bacterias/clasificación , Bacterias/aislamiento & purificación , Secuencia de Bases , Mapeo Cromosómico , Biología Computacional/instrumentación , Secuenciación de Nucleótidos de Alto Rendimiento , Internet , Análisis de Secuencia de ADN , Programas InformáticosRESUMEN
BACKGROUND: Studies have detected mis-assemblies in genomes of the species Corynebacterium pseudotuberculosis. These new discover have been possible due to the evolution of the Next-Generation Sequencing platforms, which have provided sequencing with accuracy and reduced costs. In addition, the improving of techniques for construction of high accuracy genomic maps, for example, Whole-genome mapping (WGM) (OpGen Inc), have allow high-resolution assembly that can detect large rearrangements. RESULTS: In this work, we present the resequencing of Corynebacterium pseudotuberculosis strain 1002 (Cp1002). Cp1002 was the first strain of this species sequenced in Brazil, and its genome has been used as model for several studies in silico of caseous lymphadenitis disease. The sequencing was performed using the platform Ion PGM and fragment library (200 bp kit). A restriction map was constructed, using the technique of WGM with the enzyme KpnI. After the new assembly process, using WGM as scaffolder, we detected a large inversion with size bigger than one-half of genome. A specific analysis using BLAST and NR database shows that the inversion occurs between two homology RNA ribosomal regions. CONCLUSION: In conclusion, the results showed by WGM could be used to detect mismatches in assemblies, providing genomic maps with high resolution and allow assemblies with more accuracy and completeness. The new assembly of C. pseudotuberculosis was deposited in GenBank under the accession no. CP012837.
Asunto(s)
Mapeo Cromosómico/métodos , Corynebacterium pseudotuberculosis/genética , Genoma Bacteriano , Genómica/métodos , Operón de ARNr/genética , ADN Bacteriano/genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADNRESUMEN
BACKGROUND: Corynebacterium pseudotuberculosis can be classified into two biovars or biovars based on their nitrate-reducing ability. Strains isolated from sheep and goats show negative nitrate reduction and are termed biovar Ovis, while strains from horse and cattle exhibit positive nitrate reduction and are called biovar Equi. However, molecular evidence has not been established so far to understand this difference, specifically if these C. pseudotuberculosis strains are under an evolutionary process. RESULTS: The ERIC 1 + 2 Minimum-spanning tree from 367 strains of C. pseudotuberculosis showed that the great majority of biovar Ovis strains clustered together, but separately from biovar Equi strains that also clustered amongst themselves. Using evolutionarily conserved genes (rpoB, gapA, fusA, and rsmE) and their corresponding amino acid sequences, we analyzed the phylogenetic relationship among eighteen strains of C. pseudotuberculosis belonging to both biovars Ovis and Equi. Additionally, conserved point mutation based on structural variation analysis was also carried out to elucidate the genotype-phenotype correlations and speciation. We observed that the biovars are different at the molecular phylogenetic level and a probable anagenesis is occurring slowly within the species C. pseudotuberculosis. CONCLUSIONS: Taken together the results suggest that biovar Equi is forming the biovar Ovis. However, additional analyses using other genes and other bacterial strains are required to further support our anagenesis hypothesis in C. pseudotuberculosis.