Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(6): e2305110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752776

RESUMEN

Functional disorders of the thyroid remain a global challenge and have profound impacts on human health. Serving as the barometer for thyroid function, thyroid-stimulating hormone (TSH) is considered the single most useful test of thyroid function. However, the prevailing TSH immunoassays rely on two types of antibodies in a sandwich format. The requirement of repeated incubation and washing further complicates the issue, making it unable to meet the requirements of the shifting public health landscape that demands rapid, sensitive, and low-cost TSH tests. Herein, a systematic study is performed to investigate the clinical translational potential of a single antibody-based biosensing platform for the TSH test. The biosensing platform leverages Raman spectral variations induced by the interaction between a TSH antigen and a Raman molecule-conjugated TSH antibody. In conjunction with machine learning, it allows TSH concentrations in various patient samples to be predicted with high accuracy and precision, which is robust against substrate-to-substrate, intra-substrate, and day-to-day variations. It is envisioned that the simplicity and generalizability of this single-antibody immunoassay coupled with the demonstrated performance in patient samples pave the way for it to be widely applied in clinical settings for low-cost detection of hormones, other molecular biomarkers, DNA, RNA, and pathogens.


Asunto(s)
Anticuerpos , Tirotropina , Humanos , Inmunoensayo
2.
Sens Actuators B Chem ; 4042024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38524639

RESUMEN

Recent advances in Raman spectroscopy have shown great potential for non-invasive analyte sensing, but the lack of a standardized optical phantom for these measurements has hindered further progress. While many research groups have developed optical phantoms that mimic bulk optical absorption and scattering, these materials typically have strong Raman scattering, making it difficult to distinguish metabolite signals. As a result, solid tissue phantoms for spectroscopy have been limited to highly scattering tissues such as bones and calcifications, and metabolite sensing has been primarily performed using liquid tissue phantoms. To address this issue, we have developed a layered skin-mimetic phantom that can support metabolite sensing through Raman spectroscopy. Our approach incorporates millifluidic vasculature that mimics blood vessels to allow for diffusion akin to metabolite diffusion in the skin. Furthermore, our skin phantoms are mechanically mimetic, providing an ideal model for development of minimally invasive optical techniques. By providing a standardized platform for measuring metabolites, our approach has the potential to facilitate critical developments in spectroscopic techniques and improve our understanding of metabolite dynamics in vivo.

3.
Nano Lett ; 23(20): 9529-9537, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819891

RESUMEN

While fundamental to quantum sensing, quantum state control has been traditionally limited to extreme conditions. This restricts the impact of the practical implementation of quantum sensing on a broad range of physical measurements. Plexcitons, however, provide a promising path under ambient conditions toward quantum state control and thus quantum sensing, owing to their origin from strong plasmon-exciton coupling. Herein, we harness plexcitons to demonstrate quantum plexcitonic sensing by strongly coupling excitonic particles to a plasmonic hyperbolic metasurface. As compared to classical sensing in the weak-coupling regime, our model of quantum plexcitonic sensing performs at a level that is ∼40 times more sensitive. Noise-modulated sensitivity studies reinforce the quantum advantage over classical sensing, featuring better sensitivity, smaller sensitivity uncertainty, and higher resilience against optical noise. The successful demonstration of quantum plexcitonic sensing opens the door for a variety of physical, chemical, and biological measurements by leveraging strongly coupled plasmon-exciton systems.

4.
Nano Lett ; 23(12): 5746-5754, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37289011

RESUMEN

While nitrogen-vacancy (NV) centers in diamonds have emerged as promising solid-state quantum emitters for sensing applications, the tantalizing possibility of coupling them with photonic or broadband plasmonic nanostructures to create ultrasensitive biolabels has not been fully realized. Indeed, it remains technologically challenging to create free-standing hybrid diamond-based imaging nanoprobes with enhanced brightness and high temporal resolution. Herein, we leverage the bottom-up DNA self-assembly to develop hybrid free-standing plasmonic nanodiamonds, which feature a closed plasmonic nanocavity completely encapsulating a single nanodiamond. Correlated single nanoparticle spectroscopical characterizations suggest that the plasmonic nanodiamond displays dramatically and simultaneously enhanced brightness and emission rate. We believe that they hold huge potential to serve as a stable solid-state single-photon source and could serve as a versatile platform to study nontrivial quantum effects in biological systems with enhanced spatial and temporal resolution.

5.
Nano Lett ; 23(10): 4602-4608, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37154678

RESUMEN

Quantitative phase imaging (QPI) is a powerful optical imaging modality for label-free, rapid, and three-dimensional (3D) monitoring of cells and tissues. However, molecular imaging of important intracellular biomolecules such as enzymes remains a largely unexplored area for QPI. Herein, we introduce a fundamentally new approach by designing QPI contrast agents that allow sensitive detection of intracellular biomolecules. We report a new class of bio-orthogonal QPI-nanoprobes for in situ high-contrast refractive index (RI) imaging of enzyme activity. The nanoprobes feature silica nanoparticles (SiO2 NPs) having higher RI than endogenous cellular components and surface-anchored cyanobenzothiazole-cysteine (CBT-Cys) conjugated enzyme-responsive peptide sequences. The nanoprobes specifically aggregated in cells with target enzyme activity, increasing intracellular RI and enabling precise visualization of intracellular enzyme activity. We envision that this general design of QPI-nanoprobes could open doors for spatial-temporal mapping of enzyme activity with direct implications for disease diagnosis and evaluating the therapeutic efficacy.


Asunto(s)
Microscopía , Nanopartículas , Microscopía/métodos , Dióxido de Silicio/química , Nanopartículas/química , Imagen Óptica/métodos
6.
Semin Cancer Biol ; 86(Pt 3): 743-752, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34273519

RESUMEN

The role of human microbiota in cancer initiation and progression is recognized in recent years. In order to investigate the interactions between cancer cells and microbes, a systematic analysis using various emerging techniques is required. Owing to the label-free, non-invasive and molecular fingerprinting characteristics, vibrational spectroscopy is uniquely suited to decode and understand the relationship and interactions between cancer and the microbiota at the molecular level. In this review, we first provide a quick overview of the fundamentals of vibrational spectroscopic techniques, namely Raman and infrared spectroscopy. Next, we discuss the emerging evidence underscoring utilities of these spectroscopic techniques to study cancer or microbes separately, and share our perspective on how vibrational spectroscopy can be employed at the intersection of the two fields. Finally, we envision the potential opportunities in exploiting vibrational spectroscopy not only in basic cancer-microbiome research but also in its clinical translation, and discuss the challenges in the bench to bedside translation.


Asunto(s)
Microbiota , Neoplasias , Humanos , Espectrometría Raman/métodos , Vibración
7.
Bipolar Disord ; 25(1): 56-65, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36409044

RESUMEN

BACKGROUND: The use of lithium during breast-feeding has not been comprehensively investigated in humans due to concerns about lithium toxicity. PROCEDURE: We analyzed lithium in the kidneys of nursed pups of lithium medicated mothers, using analytical spectroscopy in a novel rat model. The mothers were healthy rats administered lithium via gavage (1000 mg/day Li2 CO3 per 50 kg body weight). RESULTS: Lithium was detected in the breast milk, and in the blood of pups (0.08 mM), of lithium-exposed dams at post-natal day 18 (P18), during breast-feeding. No lithium was detected after breast-feeding, at P25 (4 days after cessation of nursing). The lithium pups blood had elevated urea nitrogen at P18 and reduced total T4 at P18 and P25, indicating a longer-term effect on the kidneys and the thyroid gland. Multivariate machine-learning analysis of spectroscopy data collected from the excised kidneys of pups showed elevated potassium in lithium-exposed animals both during- and after breast-feeding. The elevated renal potassium was associated with low nephrin expression in the kidneys measured immunohistochemically during breast-feeding. After lithium exposure is stopped, the filtration of lithium from the kidneys reverses these effects. Our study showed that breastfeeding during lithium use has an effect on the kidneys of the offspring in rats.


Asunto(s)
Trastorno Bipolar , Leche Humana , Femenino , Ratas , Lactante , Humanos , Animales , Leche Humana/química , Litio/uso terapéutico , Trastorno Bipolar/tratamiento farmacológico , Riñón , Potasio/análisis , Potasio/uso terapéutico , Lactancia Materna
8.
Nano Lett ; 22(9): 3620-3627, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35348344

RESUMEN

Widespread testing and isolation of infected patients is a cornerstone of viral outbreak management, as underscored during the ongoing COVID-19 pandemic. Here, we report a large-area and label-free testing platform that combines surface-enhanced Raman spectroscopy and machine learning for the rapid and accurate detection of SARS-CoV-2. Spectroscopic signatures acquired from virus samples on metal-insulator-metal nanostructures, fabricated using nanoimprint lithography and transfer printing, can provide test results within 25 min. Not only can our technique accurately distinguish between different respiratory and nonrespiratory viruses, but it can also detect virus signatures in physiologically relevant matrices such as human saliva without any additional sample preparation. Furthermore, our large area nanopatterning approach allows sensors to be fabricated on flexible surfaces allowing them to be mounted on any surface or used as wearables. We envision that our versatile and portable label-free spectroscopic platform will offer an important tool for virus detection and future outbreak preparedness.


Asunto(s)
COVID-19 , Nanoestructuras , COVID-19/diagnóstico , Humanos , Nanoestructuras/química , Pandemias , SARS-CoV-2 , Espectrometría Raman/métodos
9.
Small ; 18(18): e2200090, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35373504

RESUMEN

Small molecules play a pivotal role in regulating physiological processes and serve as biomarkers to uncover pathological conditions and the effects of therapeutic treatments. However, it remains a significant challenge to detect small molecules given the size as compared to macromolecules. Recently, the newly emerging plasmonic immunoassays based on surface-enhanced Raman scattering (SERS) offer great promise to deliver extraordinary sensitivity. Nevertheless, they are limited by the intrinsic SERS intensity fluctuations associated with the SERS uncertainty principle. The single transducer that relies on the intensity change is also prone to false signals. Additionally, the prevailing sandwich immunoassay format proves less effective towards detecting small molecules. To circumvent these critical issues, a dual-modal single-antibody approach that synergizes both the intensity and shift of the peak-based immunoassay with Raman enhancement, coined as the INSPIRE assay, is developed for small molecules detection. With two independent transduction mechanisms, it allows better prediction of analyte concentration and attenuation of signal artifacts, providing a new and robust strategy for molecular analysis. With a proof-of-concept demonstration for detection of free T4 and testosterone in serum matrix, the authors envision that the INSPIRE assay could be expanded for a wide spectrum of applications in biomedical diagnosis, discovery of new biopharmaceuticals, food safety, and environmental monitoring.


Asunto(s)
Oro , Nanopartículas del Metal , Anticuerpos , Inmunoensayo , Espectrometría Raman
10.
Small ; 18(42): e2204541, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36117050

RESUMEN

While immunoassays are pivotal to medical diagnosis and bioanalytical chemistry, the current landscape of public health has catalyzed an important shift in the requirements of immunoassays that demand innovative solutions. For example, rapid, label-free, and low-cost screening of a given analyte is required to inform the best countermeasures to combat infectious diseases in a timely manner. Yet, the current design of immunoassays cannot accommodate such requirements as constraint by accumulative challenges, such as repeated incubation and washing, and the need of two types of antibodies in the sandwich format. To provide a potential solution, herein, a plasmonic Raman immunoassay with single-antibody, multivariate regression, and shift-of-peak strategies, coined as the PRISM assay, for serum biomarkers detection, is reported. The PRISM assay relies on Raman reporter-antibody conjugates to capture analytes on a plasmonic substrate. The ensuing nanomechanical perturbations to vibration of Raman reporters induce subtle but characteristic spectral changes that encode rich information related to the captured analytes. By fusing Raman spectroscopy and chemometric analysis, both Raman frequency shift- and multivariate regression models for sensitive detection of biomarkers are developed. The PRISM assay is expected to find a wide range of applications in clinical diagnosis, food safety surveillance, and environmental monitoring.


Asunto(s)
Espectrometría Raman , Inmunoensayo/métodos , Espectrometría Raman/métodos , Biomarcadores
11.
Adv Funct Mater ; 31(30)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34512229

RESUMEN

Nanotechnology has provided tools for next generation biomedical devices which rely on nanostructure interfaces with living cells. In vitro biomimetic structures have enabled observation of cell response to various mechanical and chemical cues, and there is a growing interest in isolating and harnessing the specific cues that three-dimensional microenvironments can provide without the requirement for such culture and the experimental drawbacks associated with it. Here we report a randomly oriented gold coated Si nanowire substrate with patterned hydrophobic-hydrophilic areas for differentiation of isogenic breast cancer cells of varying metastatic potential. When considering synthetic surfaces for the study of cell-nanotopography interfaces, randomly oriented nanowires more closely resemble the isotropic architecture of natural extracellular matrix as compared to currently more widely used vertical nanowire arrays. In the study reported here, we show that primary cancer cells preferably attach to the hydrophilic region of randomly oriented nanowire substrate while secondary cancer cells do not adhere. Using machine learning analysis of fluorescence images, cells were found to spread and elongate on the nanowire substrates as compared to a flat substrate, where they mostly remain round, when neither surface was coated with extracellular matrix (ECM) proteins. Such platforms can not only be used for developing bioassays but also as stepping stones for tissue printing technologies where cells can be selectively patterned at desired locations.

12.
Small ; 17(3): e2007244, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33354911

RESUMEN

Coherent manipulation of light-matter interactions is pivotal to the advancement of nanophotonics. Conventionally, the non-resonant optical Stark effect is harnessed for band engineering by intense laser pumping. However, this method is hindered by the transient Stark shifts and the high-energy laser pumping which, by itself, is precluded as a nanoscale optical source due to light diffraction. As an analog of photons in a laser, surface plasmons are uniquely positioned to coherently interact with matter through near-field coupling, thereby, providing a potential source of electric fields. Herein, the first demonstration of plasmonic Stark effect is reported and attributed to a newly uncovered energy-bending mechanism. As a complementary approach to the optical Stark effect, it is envisioned that the plasmonic Stark effect will advance fundamental understanding of coherent light-matter interactions and will also provide new opportunities for advanced optoelectronic tools, such as ultrafast all-optical switches and biological nanoprobes at lower light power levels.


Asunto(s)
Rayos Láser , Fotones , Ingeniería
13.
Small ; 17(21): e2100161, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33942486

RESUMEN

A generalized label-free platform for surface-selective molecular sensing in living cells can transform the ability to examine complex events in the cell membrane. While vertically aligned semiconductor and metal-semiconductor hybrid nanopillars have rapidly surfaced for stimulating and probing the intracellular environment, the potential of such constructs for selectively interrogating the cell membrane is surprisingly underappreciated. In this work, a new platform, entitled nano-PROD (nano-pillar based Raman optical detection), enables molecular recording by probing fundamental vibrational modes of membrane constituents of cells adherent on a large-area silver-coated silicon nanopillar substrate fabricated using a precursor solution-based nanomanufacturing process. It is shown that the nano-PROD platform sustains live cells in near-physiological conditions, which can be directly profiled using surface-enhanced Raman spectroscopy due to the confined electromagnetic field enhancement. The experimental results highlight the utility of the platform in probing specific cell surface markers for accurately recognizing the phenotypically identical prostate cancer cells, differing only in prostate-specific membrane antigen expression. Due to its tunability, nano-PROD has the promise to be readily extendable to other applications that can leverage its unique combination of nanoscale topographic features and molecular sensing capabilities, from stain-free cytopathology inspection to understanding spatio-mechanical regulation in membrane receptor function.


Asunto(s)
Plata , Espectrometría Raman , Membrana Celular , Silicio
14.
Small ; 17(39): e2102596, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34411423

RESUMEN

Enhancing light-matter interactions is fundamental to the advancement of nanophotonics and optoelectronics. Yet, light diffraction on dielectric platforms and energy loss on plasmonic metallic systems present an undesirable trade-off between coherent energy exchange and incoherent energy damping. Through judicious structural design, both light confinement and energy loss issues could be potentially and simultaneously addressed by creating bound states in the continuum (BICs) where light is ideally decoupled from the radiative continuum. Herein, the authors present a general framework based on the two-coupled resonances to first conceptualize and then numerically demonstrate a type of quasi-BICs that can be achieved through the interference between two bare resonance modes and is characterized by the considerably narrowed spectral line shape even on lossy metallic nanostructures. The ubiquity of the proposed framework further allows the paradigm to be extended for the realization of plexcitonic quasi-BICs on the same metallic systems. Owing to the topological nature, both plasmonic and plexcitonic quasi-BICs display strong mode robustness against parameters variation, thereby providing an attractive platform to unlock the potential of the coupled plasmon-exciton systems for manipulation of the photophysical properties of condensed phases.


Asunto(s)
Nanoestructuras , Fenómenos Físicos
15.
FASEB J ; 34(7): 9307-9315, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32463148

RESUMEN

In this study, we explored the relation between metastatic states vs the capacity of confined migration, amoeboid transition, and cellular stiffness. We compared across an isogenic panel of human breast cancer cells derived from MDA-MB-231 cells. It was observed that cells after lung metastasis have the fastest migration and lowest stiffness, with a significantly higher capacity to transition into an amoeboid mode. Our findings illustrate that metastasis is a selective process favoring motile and softer cells. Moreover, the observation that circulating tumor cells resemble the parental cell line, but not lung-metastatic cells, suggests that cells with higher deformability and motility are likely selected during extravasation and colonization.


Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/secundario , Apoptosis , Proliferación Celular , Progresión de la Enfermedad , Femenino , Humanos , Metástasis de la Neoplasia , Células Tumorales Cultivadas
16.
Bipolar Disord ; 23(6): 615-625, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33507599

RESUMEN

BACKGROUND: Lithium is especially taken as a maintenance medication for Bipolar Disorder. In women with bipolar disorder, lithium is often effective during postpartum period, but breast-feeding for medicated mothers is controversial because of harmful effects for her child. At present, the biological mechanisms of lithium are not well-understood, affecting its usage and overall health implications. PROCEDURE: We developed a rat lithium and breast-feeding model at human therapeutic levels to study the effects of lithium exposure through breast-milk on pups' thyroid function. Novel laser analytical spectroscopy, along with traditional blood and immunohistochemical tests, were applied to further investigate the mechanisms behind the thyroid dysfunction. Maternal iodine supplementation was evaluated as a therapeutic method to address the pups' thyroid dysfunction. RESULTS: Pups exposed to lithium via breastmilk, even with the dam on a sub-therapeutic level, experienced weight gain, reduced blood thyroxine (T4 ), and elevated blood urea nitrogen, indicating effects on thyroid and kidney function. We show that lithium inhibited iodine uptake by thyroid follicles, initiating a mechanism that reduced iodination of tyrosine, thyroglobulin cleavage, and thyroid hormone production. Importantly, infant thyroid function can be significantly improved by administering supplementary iodine to the medicated dam's diet during breast-feeding. CONCLUSION: These results elucidate the mechanisms of lithium in thyroid function, provide valuable information on use postpartum, and suggest a clinically applicable remedy to side-effects. The results are particularly important for patients (and their infants) who respond well to lithium and need, or choose, to breast-feed.


Asunto(s)
Trastorno Bipolar , Yodo , Animales , Suplementos Dietéticos , Femenino , Humanos , Yodo/análisis , Litio , Leche Humana , Ratas , Glándula Tiroides/diagnóstico por imagen , Tirotropina
17.
Angew Chem Int Ed Engl ; 60(8): 3923-3927, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33325142

RESUMEN

Olsalazine (Olsa) is a broad-spectrum anti-cancer agent acting as a DNA-methylation inhibitor. When conjugated to 2-cyano-6-aminobenzothiazole and a peptide substrate specific for the tumor-overexpressed enzyme furin, it can self-assemble into nanoparticles that can be detected by chemical-exchange saturation-transfer magnetic-resonance imaging (CEST MRI). We report here that these nano-assemblies can also be detected with high specificity in furin-overexpressing tumor cells by Raman spectroscopy with a distinct scattering signature and demonstrate the utility of this sensing mechanism in vitro and in vivo. Our findings suggest that Raman spectroscopy could be used for high-resolution image-guided surgery to precisely delineate tumor margins during and after resection in real-time as well as to determine microscopic tumor invasion and multifocal locoregional tumor spread, which are currently impossible to visualize with available imaging technologies, including CEST MRI.


Asunto(s)
Ácidos Aminosalicílicos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Animales , Medios de Contraste/química , Células HCT116 , Humanos , Ratones , Ratones SCID , Microscopía Fluorescente , Neoplasias/patología , Espectrometría Raman , Trasplante Heterólogo
18.
Nat Mater ; 18(12): 1376-1383, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31636420

RESUMEN

Among the strategies used for enhancement of tumour retention of imaging agents or anticancer drugs is the rational design of probes that undergo a tumour-specific enzymatic reaction preventing them from being pumped out of the cell. Here, the anticancer agent olsalazine (Olsa) was conjugated to the cell-penetrating peptide RVRR. Taking advantage of a biologically compatible condensation reaction, single Olsa-RVRR molecules were self-assembled into large intracellular nanoparticles by the tumour-associated enzyme furin. Both Olsa-RVRR and Olsa nanoparticles were readily detected with chemical exchange saturation transfer magnetic resonance imaging by virtue of exchangeable Olsa hydroxyl protons. In vivo studies using HCT116 and LoVo murine xenografts showed that the OlsaCEST signal and anti-tumour therapeutic effect were 6.5- and 5.2-fold increased, respectively, compared to Olsa without RVRR, with an excellent 'theranostic correlation' (R2 = 0.97) between the imaging signal and therapeutic response (normalized tumour size). This furin-targeted, magnetic resonance imaging-detectable platform has potential for imaging tumour aggressiveness, drug accumulation and therapeutic response.


Asunto(s)
Ácidos Aminosalicílicos/metabolismo , Antineoplásicos/metabolismo , Furina/metabolismo , Espacio Intracelular/metabolismo , Imagen por Resonancia Magnética/métodos , Nanopartículas , Ácidos Aminosalicílicos/química , Animales , Antineoplásicos/química , Catálisis , Línea Celular Tumoral , Transformación Celular Neoplásica , Células HCT116 , Humanos , Ratones
19.
Nano Lett ; 19(3): 1409-1417, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30433789

RESUMEN

Biological samples such as cells have complex three-dimensional (3D) spatio-molecular profiles and often feature soft and irregular surfaces. Conventional biosensors are based largely on 2D and rigid substrates, which have limited contact area with the entirety of the surface of biological samples making it challenging to obtain 3D spatially resolved spectroscopic information, especially in a label-free manner. Here, we report an ultrathin, flexible skinlike biosensing platform that is capable of conformally wrapping a soft or irregularly shaped 3D biological sample such as a cancer cell or a pollen grain, and therefore enables 3D label-free spatially resolved molecular spectroscopy via surface-enhanced Raman spectroscopy (SERS). Our platform features an ultrathin thermally responsive poly( N-isopropylacrylamide)-graphene-nanoparticle hybrid skin that can be triggered to self-fold and wrap around 3D micro-objects in a conformal manner due to its superior flexibility. We highlight the utility of this 3D biosensing platform by spatially mapping the 3D molecular signatures of a variety of microparticles including silica microspheres, spiky pollen grains, and human breast cancer cells.


Asunto(s)
Técnicas Biosensibles , Grafito/química , Nanopartículas/química , Resinas Acrílicas/química , Neoplasias de la Mama/genética , Femenino , Oro/química , Humanos , Dióxido de Silicio/química , Espectrometría Raman
20.
Angew Chem Int Ed Engl ; 59(15): 5972-5978, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31972060

RESUMEN

The use of surface-enhanced Raman spectroscopy (SERS) to determine spectral markers for the diagnosis of heparin-induced thrombocytopenia (HIT), a difficult-to-diagnose immune-related complication that often leads to limb ischemia and thromboembolism, is proposed. The ability to produce distinct molecular signatures without the addition of labels enables unbiased inquiry and makes SERS an attractive complementary diagnostic tool. A capillary-tube-derived SERS platform offers ultrasensitive, label-free measurement as well as efficient handling of blood serum samples. This shows excellent reproducibility, long-term stability and provides an alternative diagnostic rubric for the determination of HIT by leveraging machine-learning-based classification of the spectroscopic data. We envision that a portable Raman instrument could be combined with the capillary-tube-based SERS analytical tool for diagnosis of HIT in the clinical laboratory, without perturbing the existing diagnostic workflow.


Asunto(s)
Heparina/efectos adversos , Espectrometría Raman , Trombocitopenia/inducido químicamente , Trombocitopenia/diagnóstico , Humanos , Aprendizaje Automático , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA