Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(9): 107602, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059496

RESUMEN

Glycosylation is a predominant strategy plants use to fine-tune the properties of small molecule metabolites to affect their bioactivity, transport, and storage. It is also important in biotechnology and medicine as many glycosides are utilized in human health. Small molecule glycosylation is largely carried out by family 1 glycosyltransferases. Here, we report a structural and biochemical investigation of UGT95A1, a family 1 GT enzyme from Pilosella officinarum that exhibits a strong, unusual regiospecificity for the 3'-O position of flavonoid acceptor substrate luteolin. We obtained an apo crystal structure to help drive the analyses of a series of binding site mutants, revealing that while most residues are tolerant to mutations, key residues M145 and D464 are important for overall glycosylation activity. Interestingly, E347 is crucial for maintaining the strong preference for 3'-O glycosylation, while R462 can be mutated to increase regioselectivity. The structural determinants of regioselectivity were further confirmed in homologous enzymes. Our study also suggests that the enzyme contains large, highly dynamic, disordered regions. We showed that while most disordered regions of the protein have little to no implication in catalysis, the disordered regions conserved among investigated homologs are important to both the overall efficiency and regiospecificity of the enzyme. This report represents a comprehensive in-depth analysis of a family 1 GT enzyme with a unique substrate regiospecificity and may provide a basis for enzyme functional prediction and engineering.


Asunto(s)
Glicosiltransferasas , Glicosilación , Glicosiltransferasas/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Especificidad por Sustrato , Flavonoides/metabolismo , Flavonoides/química , Cristalografía por Rayos X , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sitios de Unión , Luteolina/química , Luteolina/metabolismo , Modelos Moleculares , Conformación Proteica
2.
Nat Prod Rep ; 40(7): 1170-1180, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-36853278

RESUMEN

Glycosylation is a successful strategy to alter the pharmacological properties of small molecules, and it has emerged as a unique approach to expand the chemical space of natural products that can be explored in drug discovery. Traditionally, most glycosylation events have been carried out chemically, often requiring many protection and deprotection steps to achieve a target molecule. Enzymatic glycosylation by glycosyltransferases could provide an alternative strategy for producing new glycosides. In particular, the glycosyltransferase family has greatly expanded in plants, representing a rich enzymatic resource to mine and expand the diversity of glycosides with novel bioactive properties. This article highlights previous and prospective uses for plant glycosyltransferases in generating bioactive glycosides and altering their pharmacological properties.


Asunto(s)
Glicósidos , Glicosiltransferasas , Glicosiltransferasas/química , Glicósidos/farmacología , Glicósidos/química , Glicosilación , Plantas/metabolismo , Descubrimiento de Drogas
3.
ACS Synth Biol ; 13(3): 736-744, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412618

RESUMEN

Glucosinolates are plant-specialized metabolites that can be hydrolyzed by glycosyl hydrolases, called myrosinases, creating a variety of hydrolysis products that benefit human health. While cruciferous vegetables are a rich source of glucosinolates, they are often cooked before consumption, limiting the conversion of glucosinolates to hydrolysis products due to the denaturation of myrosinases. Here we screen a panel of glycosyl hydrolases for high thermostability and engineer the Brassica crop, broccoli (Brassica oleracea L.), for the improved conversion of glucosinolates to chemopreventive hydrolysis products. Our transgenic broccoli lines enabled glucosinolate hydrolysis to occur at higher cooking temperatures, 20 °C higher than in wild-type broccoli. The process of cooking fundamentally transforms the bioavailability of many health-relevant bioactive compounds in our diet. Our findings demonstrate the promise of leveraging genetic engineering to tailor crops with novel traits that cannot be achieved through conventional breeding and improve the nutritional properties of the plants we consume.


Asunto(s)
Brassica , Humanos , Brassica/genética , Glucosinolatos/análisis , Culinaria , Productos Agrícolas/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Isotiocianatos/metabolismo
4.
Nat Food ; 5(6): 480-490, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872016

RESUMEN

Human milk oligosaccharides (HMOs) are a diverse class of carbohydrates which support the health and development of infants. The vast health benefits of HMOs have made them a commercial target for microbial production; however, producing the approximately 200 structurally diverse HMOs at scale has proved difficult. Here we produce a diversity of HMOs by leveraging the robust carbohydrate anabolism of plants. This diversity includes high-value and complex HMOs, such as lacto-N-fucopentaose I. HMOs produced in transgenic plants provided strong bifidogenic properties, indicating their ability to serve as a prebiotic supplement with potential applications in adult and infant health. Technoeconomic analyses demonstrate that producing HMOs in plants provides a path to the large-scale production of specific HMOs at lower prices than microbial production platforms. Our work demonstrates the promise in leveraging plants for the low-cost and sustainable production of HMOs.


Asunto(s)
Leche Humana , Oligosacáridos , Plantas Modificadas Genéticamente , Oligosacáridos/metabolismo , Humanos , Leche Humana/metabolismo , Leche Humana/química , Plantas Modificadas Genéticamente/genética , Prebióticos , Fotosíntesis
5.
Biology (Basel) ; 12(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38132331

RESUMEN

Plants possess an innate ability to generate vast amounts of sugar and produce a range of sugar-derived compounds that can be utilized for applications in industry, health, and agriculture. Nucleotide sugars lie at the unique intersection of primary and specialized metabolism, enabling the biosynthesis of numerous molecules ranging from small glycosides to complex polysaccharides. Plants are tolerant to perturbations to their balance of nucleotide sugars, allowing for the overproduction of endogenous nucleotide sugars to push flux towards a particular product without necessitating the re-engineering of upstream pathways. Pathways to produce even non-native nucleotide sugars may be introduced to synthesize entirely novel products. Heterologously expressed glycosyltransferases capable of unique sugar chemistries can further widen the synthetic repertoire of a plant, and transporters can increase the amount of nucleotide sugars available to glycosyltransferases. In this opinion piece, we examine recent successes and potential future uses of engineered nucleotide sugar biosynthetic, transport, and utilization pathways to improve the production of target compounds. Additionally, we highlight current efforts to engineer glycosyltransferases. Ultimately, the robust nature of plant sugar biochemistry renders plants a powerful chassis for the production of target glycoconjugates and glycans.

6.
ACS Synth Biol ; 12(5): 1533-1545, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37083366

RESUMEN

The need for convenient tools to express transgenes over a large dynamic range is pervasive throughout plant synthetic biology; however, current efforts are largely limited by the heavy reliance on a small set of strong promoters, precluding more nuanced and refined engineering endeavors in planta. To address this technical gap, we characterize a suite of constitutive promoters that span a wide range of transcriptional levels and develop a GoldenGate-based plasmid toolkit named PCONS, optimized for versatile cloning and rapid testing of transgene expression at varying strengths. We demonstrate how easy access to a stepwise gradient of expression levels can be used for optimizing synthetic transcriptional systems and the production of small molecules in planta. We also systematically investigate the potential of using PCONS as an internal standard in plant biology experimental design, establishing the best practices for signal normalization in experiments. Although our library has primarily been developed for optimizing expression in N. benthamiana, we demonstrate the translatability of our promoters across distantly related species using a multiplexed reporter assay with barcoded transcripts. Our findings showcase the advantages of the PCONS library as an invaluable toolkit for plant synthetic biology.


Asunto(s)
Plantas , Plantas/genética , Regiones Promotoras Genéticas/genética , Transgenes/genética , Plásmidos/genética , Expresión Génica
7.
bioRxiv ; 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37786679

RESUMEN

Human milk oligosaccharides (HMOs) are a diverse class of carbohydrates that aid in the health and development of infants. The vast health benefits of HMOs have made them a commercial target for microbial production; however, producing the ∼130 structurally diverse HMOs at scale has proven difficult. Here, we produce a vast diversity of HMOs by leveraging the robust carbohydrate anabolism of plants. This diversity includes high value HMOs, such as lacto-N-fucopentaose I, that have not yet been commercially produced using state-of-the-art microbial fermentative processes. HMOs produced in transgenic plants provided strong bifidogenic properties, indicating their ability to serve as a prebiotic supplement. Technoeconomic analyses demonstrate that producing HMOs in plants provides a path to the large-scale production of specific HMOs at lower prices than microbial production platforms. Our work demonstrates the promise in leveraging plants for the cheap and sustainable production of HMOs.

8.
ACS Synth Biol ; 11(5): 1865-1873, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35438493

RESUMEN

Glucoraphanin is a plant specialized metabolite found in cruciferous vegetables that has long been a target for production in a heterologous host because it can subsequently be hydrolyzed to form the chemopreventive compound sulforaphane before and during consumption. However, previous studies have only been able to produce small amounts of glucoraphanin in heterologous plant and microbial systems compared to the levels found in glucoraphanin-producing plants, suggesting that there may be missing auxiliary genes that play a role in improving production in planta. In an effort to identify auxiliary genes required for high glucoraphanin production, we leveraged transient expression in Nicotiana benthamiana to screen a combination of previously uncharacterized coexpressed genes and rationally selected genes alongside the glucoraphanin biosynthetic pathway. This strategy alleviated metabolic bottlenecks, which improved glucoraphanin production by 4.74-fold. Our optimized glucoraphanin biosynthetic pathway provides a pathway amenable for high glucoraphanin production.


Asunto(s)
Glucosinolatos , Imidoésteres , Oximas , Sulfóxidos , Nicotiana/genética
9.
Front Plant Sci ; 12: 691462, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504505

RESUMEN

Plants offer a vast source of bioactive chemicals with the potential to improve human health through the prevention and treatment of disease. However, many potential therapeutics are produced in small amounts or in species that are difficult to cultivate. The rapidly evolving field of plant synthetic biology provides tools to capitalize on the inventive chemistry of plants by transferring metabolic pathways for therapeutics into far more tenable plants, increasing our ability to produce complex pharmaceuticals in well-studied plant systems. Plant synthetic biology also provides methods to enhance the ability to fortify crops with nutrients and nutraceuticals. In this review, we discuss (1) the potential of plant synthetic biology to improve human health by generating plants that produce pharmaceuticals, nutrients, and nutraceuticals and (2) the technological challenges hindering our ability to generate plants producing health-promoting small molecules.

10.
Biodes Res ; 2020: 8189219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-37849895

RESUMEN

Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA