Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 23(21): 5827-37, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24899048

RESUMEN

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10(-5)). Thus, it appears that rare and common variants in a single gene--FBN2--can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.


Asunto(s)
Estudios de Asociación Genética , Variación Genética , Degeneración Macular/genética , Proteínas de Microfilamentos/genética , Adulto , Anciano , Secuencia de Aminoácidos , Lámina Basal de la Coroides/metabolismo , Análisis Mutacional de ADN , Exoma , Matriz Extracelular/metabolismo , Fibrilina-2 , Fibrilinas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Degeneración Macular/diagnóstico , Masculino , Metaanálisis como Asunto , Proteínas de Microfilamentos/metabolismo , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Linaje , Conformación Proteica , Estabilidad Proteica , Retina/metabolismo , Retina/patología , Alineación de Secuencia
2.
BMC Bioinformatics ; 16: 91, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25887129

RESUMEN

BACKGROUND: When studying the genetics of a human trait, we typically have to manage both genome-wide and targeted genotype data. There can be overlap of both people and markers from different genotyping experiments; the overlap can introduce several kinds of problems. Most times the overlapping genotypes are the same, but sometimes they are different. Occasionally, the lab will return genotypes using a different allele labeling scheme (for example 1/2 vs A/C). Sometimes, the genotype for a person/marker index is unreliable or missing. Further, over time some markers are merged and bad samples are re-run under a different sample name. We need a consistent picture of the subset of data we have chosen to work with even though there might possibly be conflicting measurements from multiple data sources. RESULTS: We have developed the dbVOR database, which is designed to hold data efficiently for both genome-wide and targeted experiments. The data are indexed for fast retrieval by person and marker. In addition, we store pedigree and phenotype data for our subjects. The dbVOR database allows us to select subsets of the data by several different criteria and to merge their results into a coherent and consistent whole. Data may be filtered by: family, person, trait value, markers, chromosomes, and chromosome ranges. The results can be presented in columnar, Mega2, or PLINK format. CONCLUSIONS: dbVOR serves our needs well. It is freely available from https://watson.hgen.pitt.edu/register . Documentation for dbVOR can be found at https://watson.hgen.pitt.edu/register/docs/dbvor.html .


Asunto(s)
Bases de Datos Genéticas , Genotipo , Linaje , Fenotipo , Femenino , Humanos , Masculino , Programas Informáticos
3.
F1000Res ; 7: 1352, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271589

RESUMEN

The standalone C++ Mega2 program has been facilitating data-reformatting for linkage and association analysis programs since 2000. Support for more analysis programs has been added over time. Currently, Mega2 converts data from several different genetic data formats (including PLINK, VCF, BCF, and IMPUTE2) into the specific data requirements for over 40 commonly-used linkage and association analysis programs (including Mendel, Merlin, Morgan, SHAPEIT, ROADTRIPS, MaCH/minimac3). Recently, Mega2 has been enhanced to use a SQLite database as an intermediate data representation. Additionally, Mega2 now stores bialleleic genotype data in a highly compressed form, like that of the GenABEL R package and the PLINK binary format. Our new Mega2R package now makes it easy to load Mega2 SQLite databases directly into R as data frames. In addition, Mega2R is memory efficient, keeping its genotype data in a compressed format, portions of which are only expanded when needed. Mega2R has functions that ease the process of applying gene-based tests by looping over genes, efficiently pulling out genotypes for variants within the desired boundaries. We have also created several more functions that illustrate how to use the data frames: these permit one to run the pedgene package to carry out gene-based association tests on family data, to run the SKAT package to carry out gene-based association tests, to output the Mega2R data as a VCF file and related files (for phenotype and family data), and to convert the data frames into GenABEL format. The Mega2R package enhances GenABEL since it supports additional input data formats (such as PLINK, VCF, and IMPUTE2) not currently supported by GenABEL. The Mega2 program and the Mega2R R package are both open source and are freely available, along with extensive documentation, from https://watson.hgen.pitt.edu/register for Mega2 and https://CRAN.R-project.org/package=Mega2R for Mega2R.


Asunto(s)
Programas Informáticos , Bases de Datos Factuales , Genotipo , Fenotipo
4.
Source Code Biol Med ; 9(1): 26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25687422

RESUMEN

BACKGROUND: In a typical study of the genetics of a complex human disease, many different analysis programs are used, to test for linkage and association. This requires extensive and careful data reformatting, as many of these analysis programs use differing input formats. Writing scripts to facilitate this can be tedious, time-consuming, and error-prone. To address these issues, the open source Mega2 data reformatting program provides validated and tested data conversions from several commonly-used input formats to many output formats. RESULTS: Mega2, the Manipulation Environment for Genetic Analysis, facilitates the creation of analysis-ready datasets from data gathered as part of a genetic study. It transparently allows users to process genetic data for family-based or case/control studies accurately and efficiently. In addition to data validation checks, Mega2 provides analysis setup capabilities for a broad choice of commonly-used genetic analysis programs. First released in 2000, Mega2 has recently been significantly improved in a number of ways. We have rewritten it in C++ and have reduced its memory requirements. Mega2 now can read input files in LINKAGE, PLINK, and VCF/BCF formats, as well as its own specialized annotated format. It supports conversion to many commonly-used formats including SOLAR, PLINK, Merlin, Mendel, SimWalk2, Cranefoot, IQLS, FBAT, MORGAN, BEAGLE, Eigenstrat, Structure, and PLINK/SEQ. When controlled by a batch file, Mega2 can be used non-interactively in data reformatting pipelines. Support for genetic data from several other species besides humans has been added. CONCLUSIONS: By providing tested and validated data reformatting, Mega2 facilitates more accurate and extensive analyses of genetic data, avoiding the need to write, debug, and maintain one's own custom data reformatting scripts. Mega2 is freely available at https://watson.hgen.pitt.edu/register/.

5.
J Clin Med ; 3(4): 1335-56, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25568804

RESUMEN

The key to reducing the individual and societal burden of age-related macular degeneration (AMD)-related vision loss, is to be able to initiate therapies that slow or halt the progression at a point that will yield the maximum benefit while minimizing personal risk and cost. There is a critical need to find clinical markers that, when combined with the specificity of genetic testing, will identify individuals at the earliest stages of AMD who would benefit from preventive therapies. These clinical markers are endophenotypes for AMD, present in those who are likely to develop AMD, as well as in those who have clinical evidence of AMD. Clinical characteristics associated with AMD may also be possible endophenotypes if they can be detected before or at the earliest stages of the condition, but we and others have shown that this may not always be valid. Several studies have suggested that dynamic changes in rhodopsin regeneration (dark adaptation kinetics and/or critical flicker fusion frequencies) may be more subtle indicators of AMD-associated early retinal dysfunction. One can test for the relevance of these measures using genetic risk profiles based on known genetic risk variants. These functional measures may improve the sensitivity and specificity of predictive models for AMD and may also serve to delineate clinical subtypes of AMD that may differ with respect to prognosis and treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA