Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Ther ; 29(8): 2412-2423, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-33895322

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by the emergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health, and there is an urgent need to develop safe and effective vaccines. Here, we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV-2. We show that our vaccine candidate, GRAd-COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies that neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, T helper (Th)1-dominated cellular response. We show here that the pre-fusion stabilized Spike antigen is superior to the wild type in inducing ACE2-interfering, SARS-CoV-2-neutralizing antibodies. To face the unprecedented need for vaccine manufacturing at a massive scale, different GRAd genome deletions were compared to select the vector backbone showing the highest productivity in stirred tank bioreactors. This preliminary dataset identified GRAd-COV2 as a potential COVID-19 vaccine candidate, supporting the translation of the GRAd-COV2 vaccine in a currently ongoing phase I clinical trial (ClinicalTrials.gov: NCT04528641).


Asunto(s)
Adenoviridae/inmunología , Vacunas contra el Adenovirus/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Gorilla gorilla/inmunología , Inmunogenicidad Vacunal/inmunología , SARS-CoV-2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Línea Celular Tumoral , Femenino , Vectores Genéticos/inmunología , Gorilla gorilla/virología , Células HEK293 , Células HeLa , Humanos , Macaca , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Pandemias/prevención & control , Adulto Joven
2.
Molecules ; 21(4): 395, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27023497

RESUMEN

The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L.) Newman, and two Spermatophyta, Juniperus communis L. (J. communis) and Cotinus coggygria Scop. (C. coggygria), were screened against four human cells lines (A549, MCF7, TK6 and U937). Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1-11, 19) and eight polyphenols derivatives (12-18, 20), while in J. communis extract, eight flavonoids (21-28), a α-ionone glycoside (29) and a lignin (30) were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Polifenoles/farmacología , Anacardiaceae/química , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Células MCF-7 , Medicina Tradicional , Neoplasias/genética , Extractos Vegetales/química , Polifenoles/análisis , Polifenoles/química , Semillas/química
3.
Int J Mol Sci ; 16(9): 20375-91, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26343643

RESUMEN

Photofrin/photodynamic therapy (PDT) at sub-lethal doses induced a transient stall in proteasome activity in surviving A549 (p53(+/+)) and H1299 (p53(-/-)) cells as indicated by the time-dependent decline/recovery of chymotrypsin-like activity. Indeed, within 3 h of incubation, Photofrin invaded the cytoplasm and localized preferentially within the mitochondria. Its light activation determined a decrease in mitochondrial membrane potential and a reversible arrest in proteasomal activity. A similar result is obtained by treating cells with Antimycin and Rotenone, indicating, as a common denominator of this effect, the ATP decrease. Both inhibitors, however, were more toxic to cells as the recovery of proteasomal activity was incomplete. We evaluated whether combining PDT (which is a treatment for killing tumor cells, per se, and inducing proteasome arrest in the surviving ones) with Bortezomib doses capable of sustaining the stall would protract the arrest with sufficient time to induce apoptosis in remaining cells. The evaluation of the mitochondrial membrane depolarization, residual proteasome and mitochondrial enzymatic activities, colony-forming capabilities, and changes in protein expression profiles in A549 and H1299 cells under a combined therapeutic regimen gave results consistent with our hypothesis.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Neoplasias/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Bortezomib/farmacología , Línea Celular Tumoral , Éter de Dihematoporfirina/metabolismo , Humanos , Espacio Intracelular/metabolismo , Potencial de la Membrana Mitocondrial , Microscopía Confocal , Fotoquimioterapia , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología
4.
Int J Mol Sci ; 16(9): 20417-30, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26343645

RESUMEN

Although photodynamic therapy (PDT), a therapeutic approach that involves a photosensitizer, light and O2, has been principally considered for the treatment of specific types of cancers, other applications exist, including the treatment of infections. Unfortunately, PDT does not always guarantee full success since it exerts lethal effects only in cells that have taken up a sufficient amount of photosensitizer and have been exposed to adequate light doses, conditions that are not always achieved. Based on our previous experience on the combination PDT/chemotherapy, we have explored the possibility of fighting bacteria that commonly crowd infected surfaces by combining PDT with an antibiotic, which normally does not harm the strain at low concentrations. To this purpose, we employed 5-aminolevulinic acid (5-ALA), a pro-drug that, once absorbed by proliferating bacteria, is converted into the natural photosensitizer Protoporphyrin IX (PpIX), followed by Gentamicin. Photoactivation generates reactive oxygen species (ROS) which damage or kill the cell, while Gentamicin, even at low doses, ends the work. Our experiments, in combination, have been highly successful against biofilms produced by several Gram positive bacteria (i.e., Staphylococcus aureus, Staphylococcus epidermidis, etc.). This original approach points to potentially new and wide applications in the therapy of infections of superficial wounds and sores.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Farmacorresistencia Bacteriana , Luz , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Gentamicinas/farmacología , Pruebas de Sensibilidad Microbiana , Microscopía Confocal
5.
Sci Transl Med ; 14(627): eabj1996, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34698501

RESUMEN

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are essential for ending the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand alone. We describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized prefusion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein named GRAd-COV2. We assessed the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. For this purpose, a phase 1, dose-escalation, open-labeled trial was conducted including 90 healthy participants (45 aged 18 to 55 years old and 45 aged 65 to 85 years old) who received a single intramuscular administration of GRAd-COV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported. Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants. Consistently, neutralizing antibodies were detected in 42 of 44 younger-age and 45 of 45 older-age volunteers. In addition, GRAd-COV2 induced a robust and T helper 1 cell (TH1)­skewed T cell response against the spike protein in 89 of 90 participants from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support the further development of this vaccine.


Asunto(s)
Vacunas contra el Adenovirus , COVID-19 , Adenoviridae , Anciano , Animales , Vacunas contra la COVID-19 , Gorilla gorilla , Humanos , SARS-CoV-2
6.
NPJ Vaccines ; 7(1): 111, 2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153335

RESUMEN

Despite the successful deployment of efficacious vaccines and therapeutics, the development of novel vaccines for SARS-CoV-2 remains a major goal to increase vaccine doses availability and accessibility for lower income setting. We report here on the kinetics of Spike-specific humoral and T-cell response in young and old volunteers over 6 months follow-up after a single intramuscular administration of GRAd-COV2, a gorilla adenoviral vector-based vaccine candidate currently in phase-2 of clinical development. At all three tested vaccine dosages, Spike binding and neutralizing antibodies were induced and substantially maintained up to 3 months, to then contract at 6 months. Potent T-cell responses were readily induced and sustained throughout the study period, with only minor decline. No major differences in immune response to GRAd-COV2 vaccination were observed in the two age cohorts. In light of its favorable safety and immunogenicity, GRAd-COV2 is a valuable candidate for further clinical development and potential addition to the COVID-19 vaccine toolbox to help fighting SARS-CoV-2 pandemic.

7.
Sci Transl Med ; 12(548)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32554708

RESUMEN

Strategies to enhance the induction of high magnitude T cell responses through vaccination are urgently needed. Major histocompatibility complex (MHC) class II-associated invariant chain (Ii) plays a critical role in antigen presentation, forming MHC class II peptide complexes for the generation of CD4+ T cell responses. Preclinical studies evaluating the fusion of Ii to antigens encoded in vector delivery systems have shown that this strategy may enhance T cell immune responses to the encoded antigen. We now assess this strategy in humans, using chimpanzee adenovirus 3 and modified vaccinia Ankara vectors encoding human Ii fused to the nonstructural (NS) antigens of hepatitis C virus (HCV) in a heterologous prime/boost regimen. Vaccination was well tolerated and enhanced the peak magnitude, breadth, and proliferative capacity of anti-HCV T cell responses compared to non-Ii vaccines in humans. Very high frequencies of HCV-specific T cells were elicited in humans. Polyfunctional HCV-specific CD8+ and CD4+ responses were induced with up to 30% of CD3+CD8+ cells targeting single HCV epitopes; these were mostly effector memory cells with a high proportion expressing T cell activation and cytolytic markers. No volunteers developed anti-Ii T cell or antibody responses. Using a mouse model and in vitro experiments, we show that Ii fused to NS increases HCV immune responses through enhanced ubiquitination and proteasomal degradation. This strategy could be used to develop more potent HCV vaccines that may contribute to the HCV elimination targets and paves the way for developing class II Ii vaccines against cancer and other infections.


Asunto(s)
Vacunas Virales , Antígenos de Diferenciación de Linfocitos B/genética , Linfocitos T CD8-positivos , Hepacivirus/genética , Antígenos de Histocompatibilidad Clase II , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA